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Whether you are driving a car, riding a bike or 
riding a roller-coaster, your motion is controlled 
by the forces acting on the vehicle.

REMEMBER

Before beginning this chapter, you should be able to:
 ■ describe and analyse uniform straight line motion 
graphically and algebraically

 ■ explain how changes in motion are caused by the 
action of forces

 ■ model forces as external pushes and pulls acting through 
the centre of mass of an object

 ■ use Newton’s three laws of motion to explain movement
 ■ apply the vector model of forces, including addition and 
components of forces.

KEY IDEAS

After completing this chapter, you should be able to:
 ■ apply algebraic and graphical methods to the analysis of 
changes in motion

 ■ apply Newton’s three laws of motion to situations in which 
two or more coplanar forces act in a straight line and 
two dimensions

 ■ analyse the motion of projectiles near Earth’s surface
 ■ analyse uniform circular motion in a horizontal plane
 ■ apply Newton’s second law to non-uniform circular 
motion in a vertical plane.

CHAPTER

1 Forces in action
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Describing motion
In order to explain the motion of objects, it is important to be able to measure 
and describe it clearly. The language used to describe motion must therefore 
be precise and unambiguous.

The language of motion
Distance is a measure of the length of the path taken during the change in 
 position of an object. Distance is a scalar quantity. It does not specify a direction.

Displacement is a measure of the change in position of an object. In order 
to fully describe a displacement, a direction must be specified as well as a 
magnitude. Displacement is therefore a vector quantity.

REMEMBER THIS

The physical quantities used to describe and explain motion fall into two 
distinct groups — scalar quantities and vector quantities.

Scalar quantities are those that can be described without specifying 
a direction. Mass, energy, time and temperature are all examples of scalar 
quantities.

Vector quantities are those that can only be fully described by spec-
ifying a direction as well as a magnitude. Force, d isplacement, velo city 
and acceleration are all examples of vector quantities.

Speed is a measure of the rate at which an object moves over a dis tance. 
Because distance is a scalar quantity, speed is also a scalar quantity. The 
average speed of an object can be calculated by dividing the distance travelled 
by the time taken:

average speed
distance travelled

time interval
=

Velocity is a measure of the rate of displacement of an object. Because dis-
placement (change in position) is a vector quantity, velocity is also a vector 
quantity. The velocity has the same direction as the displacement. The symbol 
v is used to denote velocity. (The symbol v is often used to represent speed 
as well.)

The average velocity of an object, vav during a time interval can be expressed 
as:

v
x
tav = ∆

∆

where
Δx represents the displacement
Δt represents the time interval.

Neither the average speed nor the average velocity provide infor mation about 
movement at any particular instant of time. The speed at any particular 
instant of time is called the instantaneous speed. The ve locity at any par-
ticular instant of time is called, not surprisingly, the instantaneous velocity. 
It is only if an object moves with a constant ve locity during a time interval that 
its instantaneous velocity throughout the interval is the same as its average 
velocity.

Distance is a measure of the length 
of the path taken when an object 
changes position. It is a scalar 
quantity.

Displacement is a measure of the 
change in position of an object. It 
is a vector quantity.

A scalar quantity has magnitude 
(size) but not direction.

A vector quantity has direction as 
well as magnitude (size).

Speed is a measure of the time rate 
at which an object moves over a 
distance.

Velocity is a measure of the time 
rate of displacement, or the time 
rate of changing position. It is a 
vector quantity.

Instantaneous speed is the speed 
at a particular instant of time.

Instantaneous velocity is the 
velocity at a particular instant 
of time.
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Acceleration
The rate at which an object changes its velocity is called its acceleration. 
Because velocity is a vector quantity, it follows that acceleration is also a vector 
quantity. The average acceleration of an object, aav , can be expressed as:

a v
tav = ∆

∆
where
Δv = the change in velocity (v − u) during the time interval Δt.

The direction of the average acceleration is the same as the direction of the 
change in velocity. The instantaneous acceleration of an object is its accel-
eration at a particular instant of time.

A non-zero acceleration is not always caused by a change in speed. The 
vector nature of acceleration means that it can have a non-zero value when 
either or both of the magnitude and direction of the velocity change. Sample 
problem 1.1 illustrates this.

Sample problem 1.1

Determine the average acceleration of each of the following objects.
(a) A car starting from rest reaches a velocity of 60 km h−1 due north in 5.0 s.
(b) A car travelling due west at a speed of 15 m s−1 turns due north at a speed 

of 20 m s−1. The change occurs in a time interval of 2.5 s.
(c) A cyclist riding due north at 8.0 m s−1 turns right to ride due east without 

changing speed in a time interval of 4.0 s.
(a) The change in velocity of the car is 60 km h−1 north. In order to determine 

the acceleration in SI units, the velocity should be expressed in m s−1.

60 km h−1 = 16.7 m s−1 (divide by 3.6 to convert from km h−1 to m s−1)

 Thus,

a
v
t

16.7 m s north
5.0 s

3.3 m s north.

av

1

2

= ∆
∆

=

=

−

−

(b) The change in velocity must first be found by subtracting vectors because 
Δv = v − u.

 The magnitude of the change in velocity can be found by using  Pythagoras’s 
 theorem or by trigonometry.

v (20 m s ) (15 m s )

25 m s

1 2 1 2

1

∆ = +

=

− −

−

 The direction can be found by calculating the value of the angle θ.

tan θ = 15
20

 = 0.75

 ⇒ θ = 37°
 The direction of the change in velocity is therefore N37°E.

Acceleration is the rate of change 
of velocity. It is a vector quantity.

Solution:

−u
15 m s−1

v
20 m s−1 Δv

path taken

θ

N

W E

S

N

W E

S
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 The average acceleration of the car is given by:

aav = 
v
t

∆
∆

 = m s N37 E
2.5 s 

25     

 

1 °−

 = 10 m s−2 N37°E.

(c) The magnitude of the change in velocity can be found by applying 
Pythagoras’s theorem to the vector diagram.

v (8.0 m s ) (8.0 m s )       1 2 1 2+∆ = − −

 = 11.3 m s−1

 The triangle formed by the vector diagram shown is a right-angled  isosceles 
triangle. The angle θ is therefore 45° and the direction of the change in 
velocity is south-east.

 The average acceleration of the cyclist is given by:

aav = 
v
t

∆
∆

 = 
m s south-east

4.0 s
11.3     

 

1−

 = 2.8 m s−2 south-east.

Revision question 1.1

Determine the average acceleration of:
(a) a rocket launched from rest that reaches a velocity of 15 m s−1 during the 

first 5.0 s after lift-off
(b) a roller-coaster cart travelling due north at 20 m s−1 that turns left during an 

interval of 4.0 s without changing speed
(c) a rally car travelling west at 100 km h−1 that turns left and slows to a speed 

of 80 km  h−1 south. The turn takes 5.0 s to complete. Provide your answer 
in m s−2.

Graphical analysis of motion
A description of motion in terms of displacement, average velocity and average 
acceleration is not complete. These quantities provide a ‘sum mary’ of motion, 
but do not provide detailed information. By describing the motion of an object 
in graphical form, it is possible to estimate its dis placement, velocity or accel-
eration at any instant during a chosen time interval.

Position–time graphs
A graph of position versus time provides information about the displace ment 
and velocity at any instant of time during the interval described by the graph. 
If the graph is a straight line or smooth curve, it is also possible to estimate the 
displacement and velocity outside the time interval described by the graph.

The velocity of an object at an instant of time can be obtained from a 
 position–time graph by determining the gradient of the line or curve at the 
point representing that instant. This method is a direct con sequence of the fact 
that velocity is a measure of the rate of change in position. If the graph is a 

−u
8.0 m s−1

v
8.0 m s−1

Δv

path taken

θ

N

W E

S

N

W E

S
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smooth curve, the gradient at an instant of time is the same as the gradient of 
the tangent to the curve at that instant.

Similarly, the speed of an object at an instant of time can be obtained by 
determining the gradient of a graph of the object’s distance from a reference 
point versus time.

A

Time (s)

P
os

iti
on

 (m
)

Δ x

B

Δ t

t0

At   t0,   v = Δ x
Δ t

=
run

This is the same as
the average velocity
between the instants
represented by the
points A and B.

rise

The instantaneous velocity v of an object is equal to the gradient of the position–
time graph. If the graph is a smooth curve, the gradient of the tangent must be 
determined.

Velocity–time graphs
A graph of velocity versus time provides information about the velocity and 
acceleration at any instant of time during the interval described by the graph. 
It also provides information about the displacement between any two instants.

The instantaneous acceleration of an object at an instant of time can be 
obtained from a velocity–time graph, by determining the gradient of the line 
or curve at the point representing that instant. This method is a direct conse-
quence of the fact that acceleration is defined as the rate of change of velocity. 
If the graph is a smooth curve, the gradient at an instant of time is the same as 
the gradient of the tangent to the curve at that instant.

The displacement of an object during a time interval can be obtained by 
determining the area under the velocity–time graph repre senting that time 
interval. The actual position of an object at any instant during the time interval 
can be found only if the starting position is known.

Similarly, the distance travelled by an object during a time interval can be 
obtained by determining the corresponding area under the speed-versus-time 
graph for the object.

Acceleration–time graphs
A graph of acceleration versus time provides information about the accel-
eration at any instant of time during the time interval described by the graph. 
It also provides information about the change in velocity between any two 
instants.

The change in velocity of an object during a time interval can be obtained 
by determining the area under the acceleration–time graph representing that 
time interval. The actual velocity of the object can be found at any instant 
during the time interval only if the initial velocity is known.

eLesson
Motion with constant acceleration
eles-0030

P
os

iti
on

Time
0

Ve
lo

ci
ty

Time
0

A
cc

el
er

at
io

n

Time
0

Area gives 
change in 
position.
Position can 
be found if 
initial position 
is known.

Area gives 
change in 
velocity.
Velocity can 
be found if 
initial velocity 
is known.

gradient

gradient

The position–time, velocity–
time and acceleration–time 
graphs for an object thrown 
vertically into the air (air 
resistance is assumed to 
be negligible). As long as 
one graph is given, the other 
two can be deduced. However, 
some extra information is 
needed in some cases.
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Sample problem 1.2

The velocity–time graph below describes the motion of a car as it travels due 
south through an intersection. The car was stationary for 6.0 s while the traffic 
lights were red.
(a) What was the displacement of the car during the interval in which it was 

slowing down?
(b) What was the average acceleration of the car during the first 4.0 s after the 

lights turned green?
(c) Determine the average velocity of the car during the interval described by 

the graph.

Time (s)

5

0
4 8 12 16 20

Ve
lo

ci
ty

 (m
 s

−1
) s

ou
th

10

(a) The displacement of the car while it was slowing down is given by the area 
under the graph describing the time interval between 4.0 s and 6.0 s.

area = 
2
1  × 2.0 s × 10 m s−1 south

 = 10 m south

 Note that the units need to be considered when calculating the area. In 
this case, the area has a direction as well.

(b) The average acceleration is given by the gradient of the graph describing 
the first 4.0 s after the lights turned green; that is, the time interval between 
12 and 16 s.

a = 
rise
run

 = 
 m  s  south

4.0 s
12 1−

 = 3.0 m s−2 south

(c) The average velocity is determined by the formula:

v
s
tav = ∆

∆
.

 The displacement during the whole time interval described by the graph is 
given by the total area under the graph.

Solution:
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 area =  4.0 s × 10 m s−1 + (
1
2  × 20 s × 10 m s−1) + (

1
2  × 4.0 s × 12 m s−1) 

+ (4.0 s × 12 m s−1 south)

 = 40 m + 10 m + 24 m + 48 m south

 = 122 m south

⇒ vav =  m south
20 s

122

 = 6.1 m s−1 south

Revision question 1.2

Use the velocity–time graph in sample problem 1.2 to answer the following 
questions.
(a) What was the acceleration of the car while it had a positive southerly 

acceleration?
(b) What was the acceleration of the car during the 2.0 s before it came to a stop 

at the traffic lights?
(c) What was the average velocity of the car during the 6.0 s before it stopped at 

the traffic lights?

Algebraic analysis of motion
The motion of an object moving in a straight line with a constant accel eration 
can be described by a number of formulae. The formulae are expressed in 
terms of:

initial velocity, u
final velocity, v
acceleration, a
time interval, t
displacement, s.

REMEMBER THIS

Each of these four formulae allows you to determine an unknown charac-
teristic of straight line motion with a constant  acceleration, as long as you 
know three other characteristics.

v = u + at  s = 
2
1

 (u + v)t  s = ut + 
2
1

 at 2  v 2 = u2 + 2as

The first two formulae above can be derived from the definitions of  velocity 
and acceleration. The other two can be derived by combining the first two. 
Because the formulae describe motion along a straight line, vector notation is 
not necessary. The displacement, velocity and accel eration can be expressed 
as positive or negative quantities.

Sample problem 1.3

Amy rides a toboggan down a steep snow-covered slope. starting from rest, 
she reaches a speed of 12 m s−1 as she passes her brother, who is standing 

Unit 3 Equations of 
constant 
acceleration 
motion
Summary screen 
and practice 
questions

AOS 3

Topic 1

Concept 5
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19  m  further down the slope from her starting position. Assume that Amy’s 
acceleration is constant.
(a) Determine Amy’s acceleration.
(b) How long did she take to reach her brother?
(c) How far had Amy travelled when she reached an instantaneous velo city 

equal to her average velocity?
(d) At what instant was Amy travelling at an instantaneous velocity equal to 

her average velocity?

(a) a = ?, u = 0, v = 12 m s−1, s = 19 m
 The appropriate formula here is v 2 = u 2 + 2as, because it includes the 

three known quantities and the unknown quantity a.

 v 2 = u 2 + 2as

⇒ (12 m s−1)2 = 0 + 2 × a × 19 m

 ⇒ 38 m × a = 144 m2 s−2

 ⇒ a = 3.8 m s−2 down the slope

(b) t = ?, u = 0, v = 12 m s−1, s = 19 m
 (Note that it is better to use the data given rather than data calcu lated in 

the previous part of the question. That way, rounding off or errors in an 
earlier part of the question will not affect this answer.)

 The appropriate formula here is s = 
2
1  (u + v)t.

⇒ 19 m = 
2
1  (0 + 12 m s−1)t

⇒ 19 m = 6.0 m s−1 × t

 ⇒ t = 
 m

6.0 m  s
19

1−

 = 3.2 s

(c) The magnitude of the average velocity during a period of constant accel-
eration is given by:

v
u v

2av = +

 = 
0 12 m s

2

1+ −

 = 6.0 m s−1.
 The distance travelled when Amy reaches an instantaneous velocity of this 

magnitude can now be calculated.
 s = ?, u = 0, v = 6.0 m s−1, a = 3.8 m s−2 (Here we have no choice but to use 

calculated data rather than given data.)
 The appropriate formula here is v 2 = u 2 + 2as.

⇒ (6.0 m s−1)2 = 0 + 2 × 3.8 m s−2 × s

 ⇒ 36 m2 s−2 = 7.6 m s−2 × s

 ⇒ s = 
36 m s
7.6 m s

 

 

2 2

2

−

−

 ⇒ = 4.7 m

 Note that this is well short of the halfway mark in terms of distance.

Solution:
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(d) t = ?, u = 0, v = 6.0 s, a = 3.8 m s−2

 The appropriate formula here is v = u + at.

⇒ 6.0 m s−1 = 0 + 3.8 m s−2 × t

 ⇒ t = 
6.0 m s
3.8 m s

 

 

1

2

−

−

 = 1.6 s (rounded off from 1.58)

 This is the midpoint of the entire time interval. In fact, during any motion 
in which the acceleration is constant, the instantaneous velo city halfway 
(in time) through the interval is equal to the average velocity during the 
interval.

Revision question 1.3

A car initially travelling at a speed of 20 m s−1 on a straight road accelerates at a 
constant rate for 16 s over a distance of 400 m.
(a) Calculate the final speed of the car.
(b) Determine the car’s acceleration without using your answer to part (a).
(c) What is the average speed of the car?
(d) What is the instantaneous speed of the car after:

  (i) 2.0 s
(ii) 8.0 s?

Newton’s laws of motion
Sir Isaac Newton’s three laws of motion, first published in 1687, explain 
changes in the motion of objects in terms of the forces acting on them. How-
ever, Einstein and others have since shown that Newton’s laws have limi-
tations. Newton’s laws fail, for example, to explain successfully the motion 
of objects travelling at speeds close to the speed of light. They do not explain 
the bending of light by the gravitational forces exerted by stars, planets and 
other large bodies in the universe. However, they do success fully explain the 
motion of most objects at Earth’s surface, the motion of satellites and the orbits 
of the planets that make up the solar system. In fact, it was Newton’s laws that 
enabled NASA to plan the trajectories of  artificial satellites.

Changing motion
When explaining changes in motion, it is necessary to consider another prop-
erty of the object — its mass. It is clear that it is more difficult, for example, to 
stop a truck moving at 20 m s−1 than it is to stop a tennis ball moving at the 
same speed. The physical quantity momentum is useful in explaining changes 
in motion, because it takes into account the mass as well as the velocity of a 
moving object.

The momentum p of an object is defined as the product of its mass m and its 
velocity v. Thus,

p = mv.

Momentum is a vector quantity that has the same direction as that of the 
velocity. The SI unit of momentum is kg m s−1.

Newton’s First Law of Motion
Every object continues in its state of rest or uniform motion unless made to 
change by a non-zero net force.

Momentum is the product of the 
mass of an object and its velocity. 
Momentum is a vector quantity.

Unit 3 Newton’s first 
law
Summary screen 
and practice 
questions

AOS 3
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REMEMBER THIS

The vector sum of the forces acting on an object is called the net force. It 
is usually denoted by the symbol  Fnet.

Newton’s First Law of Motion explains, for example, why you need to strike 
a golf ball with the club before it soars through the air. Without a net force 
acting on it, the golf ball will remain in its state of rest on the tee or grass (or 
sand, if you’re having a bad day). It explains why seat belts must be worn in 
a moving car and why you should never leave loose objects (like books, lug-
gage or pets) in the back of a moving car. When a car stops suddenly, it does 
so because there is a large net force acting on it — as a result of braking or 
a collision. However, the large force does not act on you or the loose objects 
in the car. They continue their motion until stopped by a non-zero net force. 
Without a properly fitted seatbelt, you would move forward until stopped 
by  the steering wheel, the windscreen or even the road. The loose objects 
in the car will also continue moving forward, posing a danger to anyone in 
the car.

Newton’s First Law of Motion can also be expressed in terms of momentum 
by stating that the momentum of an object does not change unless the object 
is acted upon by a non-zero net force.

Newton’s Second Law of Motion
The rate of change in momentum is directly proportional to the magnitude of the 
net force and is in the direction of the net force.

This can be expressed algebraically as:

Fnet = 
p
t

∆
∆

.

The net force can also be expressed in terms of the acceleration.

    Fnet = 
p
t

m v
t

=∆
∆

 
∆

∆
  (provided the mass is constant)

⇒ Fnet = ma

This expression of Newton’s Second Law of Motion is especially useful 
because it relates the net force to a description of the motion of objects. An 
acceleration of 1 m s−2 results when a net force of 1 N acts on an object of 
mass 1 kg.

Newton’s Third Law of Motion
If object B applies a force to object A, then object A applies an equal and  opposite 
force on object B:

Fon A by B = −Fon B by A

It is important to remember that the forces that make up the force pair act 
on different objects. The subsequent motion of each object is determined by 
the net force acting on it. For example, the net force on the brick wall at left 
is  the sum of the force applied to it by the car (shown by the red arrow) and 
all of the other forces acting on it. The force shown by the blue arrow is not 
applied to the brick wall and does not affect its motion. The net force on the 
car is the sum of the force applied by the brick wall (shown by the blue arrow) 
and all of the other forces acting on it.
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Feeling lighter — feeling heavier
As you sit reading this, your weight force, the force on you by the Earth 
(W =  mg), is pulling you down towards the centre of the Earth, but the chair 
is in the way. The material in the chair is being compressed and pushes up on 
you. This force is called the normal reaction force (N), because if you were not 
sitting on the chair, there would be no force. If these two forces, the weight 
force and the reaction force, balance, the net force on you is zero.

You ‘feel’ the Earth’s pull on you because of Newton’s third law. The upward 
compressive force on you by the chair is paired with the downward force on 
the chair by you. You sense this downward force through the compression in 
the bones in your pelvis.

What happens to these forces when you are in a lift? A lift going up initially 
accelerates upwards, then travels at a constant speed (no acceleration) and 
finally slows down (the direction of acceleration is downwards). You experi-
ence each of these stages differently.

Accelerating upwards
When you are accelerating upwards, the net force on you is upwards. The only 
forces acting on you are your weight force down and the reaction force by the 
floor acting upwards. Your weight force is not going to change. So if the net 
force on you is up, then the reaction force on you must be greater than your 
weight force, N > mg.

4
3
2
1

cable

GOING UP

normal
reaction
force, N

weight
force, mg

SPEEDING 
UP

apparently heavier

4
3
2
1

cable

GOING UP

normal
reaction
force, N

weight
force, mg

SLOWING
DOWN

apparently lighter

You sense your weight only because the floor pushes up on you. The magnitude 
of the normal reaction force determines how heavy you feel.

If the reaction force on you by the floor of the lift is greater than your weight 
force, then by Newton’s third law, the force on the floor of the lift by you is also 
greater than your weight force. This means you feel a greater compression in 
the bones in your legs. You ‘feel heavier’.

Accelerating downwards
When you are accelerating downwards, the net force on you is downwards. So 
the reaction force on you must be less than your weight force, N < mg. You feel 
a lesser compression in the bones in your legs. You ‘feel lighter’.
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Applying Newton’s Second Law of 
Motion
The following sample problem shows how Newton’s Second Law of Motion 
can be applied to single objects or to a system of two objects.

Sample problem 1.4

A large car of mass 1600 kg starts from rest on a horizontal road with a forward thrust 
of 5400  N due east. The sum of the forces resisting the motion of the car is 600  N. 
(a) Determine the acceleration of the car.
(b) The same car is used to tow a 400 kg trailer with the same forward thrust as 

before. The sum of the forces resisting the motion of the trailer is 200  N.
  (i) Determine the acceleration of the system of the car and the trailer.

 (ii)  What is the magnitude of the force exerted by the trailer on the car? 
(The force is labelled Ptc in the following figure.)

(a) A diagram must be drawn to show the forces acting on the car and trailer. The 
vertical forces can be omitted in this case because it is clear that the sum of 
the vertical forces is zero. (Otherwise, there would be a vertical component of 
acceleration.) The vertical forces have been omitted in the figure below.

 Assign due east as positive.

N

W E

S

road frictionroad friction

direction of motion

thrust

Ptc Pct

 The net force on the car is:

Fnet = 5400 N − 600 N 

 = 4800 N.

 Applying Newton’s second law to the car gives:

Fnet = ma

 a = 
F
m
net

 = 
4800 N
1600 kg

 = 3.0 m s−2 east.

(b) (i) The net force on the entire system is:

Fnet = 5400 N − 600 N − 200 N 

 = 4600 N.

  Applying Newton’s second law to the entire system gives:

    Fnet = ma

⇒ a = 
F
m
net

    = 
4600 N
2000 kg

    = 2.3 m s−2 east.

Solution:
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 (ii)  Newton’s second law can be applied to either the car or the trailer to 
answer this question.

  Method 1: Applying Newton’s second law to the car gives:

 Fnet = ma

 = 1600 kg × 2.3 m s−2

⇒ Fnet = 3680 N.

  The net force on the car is also given by:

Fnet = 5400 N − 600 N − Ptc

  (where Ptc is the magnitude of the force exerted by the trailer on 
the car)

⇒ 3680 N = 5400 N − 600 N − Ptc

 ⇒ Ptc = 5400 N − 600 N − 3680 N

 = 1120 N.

  Method 2: Applying Newton’s second law to the trailer gives:

 Fnet = ma

 = 400 kg × 2.3 m s−2

⇒ Fnet = 920 N.

    The net force on the trailer is also given by:

   Fnet = Pct − 200 N

     (where Pct is the magnitude of the force exerted by the car on 
the trailer)

   ⇒ 920 N = Pct − 200 N

    ⇒ Pct = 920 N + 200 N 

    = 1120 N.

    Applying Newton’s third law, Pct = 1120 N.

Revision question 1.4

(a) A car of mass 1400 kg tows a trailer of mass 600 kg due north along a level 
road at constant speed. The forces resisting the motion of the car and trailer 
are 400 N and 100 N respectively.

400N100N

  (i) Determine the forward thrust applied to the car.
(ii) What is the magnitude of the tension in the bar between the car and the 

trailer?
(b) If the car and trailer in part (a), with the same resistance forces, have a 

northerly acceleration of 2.0 m s−2, what is:
     (i) the net force applied to the trailer
   (ii) the magnitude of the tension in the bar between the car and the trailer
 (iii) the forward thrust applied to the car?
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Handy tips for using Newton’s second law
Below are some handy tips for using Newton’s Second Law of Motion.
1. Draw a diagram of the system.
2. Use clearly labelled diagrams to represent the forces acting on each object 

in the system. The diagram can be simplifed, if necessary, by drawing all of 
the forces as though they were acting through the centre of mass.

3. Apply Newton’s second law to the system and/or each individual object 
until you have the information you need.

On the level
Whether you are walking on level ground, driving a car, riding in a roller-coaster or 
flying in the space shuttle, your motion is controlled by the net force acting on you.

The figure below shows the forces acting on a car moving at a constant 
 velocity on a level surface.

air resistance

driving forceroad friction

normal reaction force
normal reaction force

weight

Forces acting on a car moving on a level surface. The car’s engine is making the 
front wheels turn.

The forces acting on the car are described below.
Weight. The weight of an object is equal to the pull of gravity on it and is 
usually given the symbol W. The weight of an object is given by:

W = mg

where
m = mass
g = gravitational field strength.

 Throughout this text, the magnitude of g at Earth’s surface will be taken 
as 9.8 N kg−1. The weight of a medium-sized sedan carrying a driver and  
passenger is about 15  000 N.
Normal reaction. The normal reaction force is the upward push of the surface. 
A normal reaction force acts on all four wheels of the car. It is described as 
a normal force because it acts at right angles to the sur face. It is described 
as a reaction force because it acts in response to the force that the object 
applies to the surface. Unless the surface itself is accelerating up or down, 
the force applied to the surface by the object is the same as the weight of 
the object. The total normal reaction force is therefore equal and opposite in 
direction to the weight force.
Driving force. The force that pushes the car forward is provided at the driv-
ing wheels — the wheels that are turned by the motor. In most cars, either the 
front wheels or the rear wheels are the driving wheels. The motor of a four-
wheel drive pushes all four wheels. As the tyres push back on the road, the 
road pushes forward on the tyres, propel ling the car forward. The forward 
push of the road on the tyres is a frictional force, as it is the resistance to move-
ment of one surface across another. In this case, it is the force that prevents the 
tyres from sliding across the road. If the road or tyres are too smooth, the driv-
ing force is reduced, the tyres slide backwards and the wheels spin.
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Resistance forces. As the car moves, it applies a force to the air in front of it. 
The air applies an equal force opposite to its direction of motion. This force 
is called air resistance. The air resistance on an object increases as its speed 
increases. The other resistance force acting on the car is road friction. It 
opposes the forward motion of the non-driving wheels, rotating them in the 
same direction as the driving wheels. In the car in the previous figure, the 
front wheels are the driving wheels. Road friction opposes the motion of the 
rear wheels along the road and, therefore, the forward motion of the car. This 
road friction is an example of rolling friction, which is considerably smaller 
than both the sliding friction that acts when the brakes are applied and the 
 friction that acts on the driving wheels.

The centre of mass
The forces on a moving car do not all act at the same point on the car. When 
analysing the translational motion of an object (its movement across space 
without considering rotational motion), all of the forces applied to an object 
can be considered to be acting at one particular point. That point is the 
centre of mass. The centre of mass of a symmetrical object with uni form mass 
distribution is at the centre of the object. For example, the centre of mass of 
each of a ruler, a solid ball or an ice cube is at the centre. However, the centre 
of mass of a person or a car is not.

AS A MATTER OF FACT

If you hold an object like a ruler at its centre of mass, it will bal ance. 
However, the centre of mass does not have to be within the object. For 
example, the centre of mass of a doughnut is in its centre. A high-jumper 
can improve her performance by manoeuvring her body over the bar so 
that her centre of mass is below the bar. The centre of gravity of an object 
is a point through which the gravitational force can be considered to act. 
For most objects near Earth’s surface, it is reasonable to assume that the 
centre of mass is at the same point as the centre of gravity. This is because 
the gravi tational field strength is approximately con stant at Earth’s surface.

Where is the centre of mass of a boomerang? Try balancing a boomerang 
in a horizontal plane on one finger.

Inclined to move
The forces acting on objects on an inclined plane are similar to those acting 
on the same objects on a level surface. However, the direction of some of the 
forces is different. As a result, the direction of net force may also be different.

The forces acting on a car rolling down an inclined plane are shown in 
the figure at left. In order to simplify the diagram, all the forces are modelled 

Air resistance is the force 
applied to an object opposite to 
its direction of motion, by the air 
through which it is moving.

Road friction is the force applied 
by the road surface to the wheels 
of a vehicle in a direction opposite 
to the direction of motion of the 
vehicle.

The centre of mass is the point at 
which all of the mass of an object 
can be considered to be when 
modelling the external forces 
acting on the object.

road friction
and air resistance

normal reaction force

weight

The forces acting on a car 
rolling down an inclined plane
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as if they were acting through the centre of mass of the car. The car is then 
 considered to behave like a single particle and the rotational motion of the 
wheels is ignored.

Resolving forces into components
The net force on a car can be found by finding the vector sum of the forces 
acting on it. It is also helpful in analysing the forces and subsequent motion of 
the car to ‘break up’, or resolve, the forces into components. The figure at left 
shows how the weight can be resolved into two components — one parallel to 
the surface and one perpendicular to the surface.

By resolving the weight into these components, the analysis of the forces 
and subsequent motion of the car is made simpler. Consider the forces per-
pendicular to the inclined plane. It can be seen in the figure at left that the 
magnitude of the normal reaction force is equal to the com ponent of weight 
that is perpendicular to the surface. Thus the net force has no component per-
pendicular to the surface. (Imagine what would happen if this wasn’t the case!)

Now consider the forces parallel to the inclined plane. The horizontal com-
ponent of the weight is greater than the sum of road friction and air resistance. 
The net force is therefore parallel to the surface. The car will accelerate down 
the slope.

Sample problem 1.5

A downhill snow skier of mass 70 kg is moving down a slope inclined at 15° to 
the horizontal with a constant velocity. 
Determine:
(a) the normal reaction force
(b) the sum of the resistance forces acting on the skier.

A diagram must be drawn to show the forces acting on the skier.
(a) The net force on the skier has no component perpendicular to the surface 

of the snow. Thus:

N = Wy

 = W cos 15° (since cos 15° = 
W

W
y

 ⇒ Wy = W cos 15°)

 = mg cos 15°
 = 70 kg × 9.8 N kg−1 × cos 15°
 = 663 N, rounded to 660 N.

  The normal reaction force is therefore 660 N in the direction perpendicular 
to the surface as shown.

(b) The net force on the skier in the direction parallel to the surface is zero. 
We  know this because the skier has a constant velocity. The magnitude 
of the sum of resistance forces therefore must be equal to the component  
of the weight that is parallel to the surface.

R = Wx

     = W sin 15° (since sin 15° = 
W
W

x  ⇒ Wx = W sin 15°)

     = mg sin 15°
     = 70 kg × 9.8 N kg−1 × sin 15°
     = 178 N, rounded to 180 N

  The sum of the resistance forces (air resistance and friction) acting on the 
skier is 180 N opposite to the direction of motion.

road friction and
air resistance

components
of weight

normal reaction force

weight

Forces can be resolved into 
components. In this case, the 
weight has been resolved into 
two components. This makes 
it clear that the net force is 
parallel to the inclined plane.

15°

15°

W = weight
N = normal reaction
R  = sum of resistance
  forces

N

R

W
Wx

Wy

Solution:
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Revision question 1.5

(a) A cyclist rides at constant speed up a hill that is inclined at 15° to the hori-
zontal. The total mass of the cyclist and bicycle is 90 kg. The sum of the road 
friction and air resistance on the cyclist and bicycle is 20 N. Determine:
  (i) the forward driving force provided by the road on the bicycle
(ii) the normal reaction force.

(b) If the cyclist in part (a) coasts down the same hill with a constant total resis-
tance of 50 N, what is the cyclist’s acceleration?

Projectile motion
Any object that is launched into the air is a projectile. A basketball thrown 
towards a goal, a trapeze artist soaring through the air, and a package dropped 
from a helicopter are all examples of projectiles.

Except for those projectiles whose motion is initially straight up or down, 
or those that have their own power source (like a guided missile), projectiles 
generally follow a parabolic path. Deviations from this path can be caused either 
by air resistance, by spinning of the object or by wind. These effects are often 
small and can be ignored in many cases. A major exception, however, is the use of 
spin in many ball sports, but this effect will not be dealt with in this book.

Falling down
Imagine a ball that has been released some 
distance above the ground. Once the ball 
is set in motion, the only forces acting on it 
are gravity (straight down) and air resistance 
(straight up).

After the ball is released, the projection 
device (hand, gun, slingshot or whatever) 
stops exerting a downwards force.

The net force on the ball in the figure at 
right is downwards. As a result, the ball accel-
erates downwards. If the size of the forces and 
the mass of the ball are known, the accel-
eration can be calculated using Newton’s 
Second Law of Motion.

Often the force exerted on the ball by air 
resistance is very small in comparison to the 
force of gravity, and so can be ignored. This 
makes it possible to model projectile motion 
by assuming that the acceleration of the ball is 
due only to gravity and is a constant 9.8 m s−2 
downwards.

Sample problem 1.6

A helicopter delivering supplies to a flood-stricken farm hovers 100 m above 
the ground. A package of supplies is dropped from rest, just outside the door of 
the helicopter. Air resistance can be ignored.
(a) Calculate how long it takes the package to reach the ground.
(b) Calculate how far from its original position the package has fallen after 

0.50 s, 1.0 s, 1.5 s, 2.0 s etc. until the package has hit the ground. (You may 
like to use a spreadsheet here.) Draw a scale diagram of the package’s pos-
ition at half-second intervals.
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(a) u = 0 m s−1, s = 100 m, a = 9.8 m s−2, t = ?

 s = ut + 1
2

at 2

100 m = 0 m s−1 × t + 1
2

(9.8 m s−2)t 2

 
100
4.9

 = t 2

 t = 4.52 s, rounded to 4.5 s

 (Note: The negative square root can be ignored here as we are interested 
only in motion that has occurred after the package was released at t = 0, 
i.e. positive times.)

(b) t = 0.50 s, u = 0 m s−1, a = 9.8 m s−2, s = ?

s = ut + 1
2

at2

 = 0 × 0.5 s + 1
2

(9.8 m s−2)(0.5 s)2

 = 1.23 m, rounded to 1.2 m

 Repeat this for t = 1 s, 1.5 s, 2 s etc. to gain the results listed in the following 
table and illustrated at left.

TABLE 1.1 Vertical distance travelled over time

Time (s) 0.50 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Vertical  
distance (m) 1.2 4.9 11 20 31 44 60 78 99

Revision question 1.6

A camera is dropped by a tourist from a lookout and falls vertically to the ground. 
The thud of the camera hitting the hard ground below is heard by the tourist 
3.0 seconds later. Air resistance and the time taken for the sound to reach the 
tourist can be ignored.
(a) How far did the camera fall?
(b) What was the velocity of the camera when it hit the ground below?

Terminal velocity
The air resistance on a falling object increases as its velocity increases. An 
object falling from rest initially experiences no air resistance. As the object 
accelerates due to gravity, the air resistance increases. Eventually, if the object 
doesn’t hit a surface first, the air resistance will become as large as the object’s 
weight. The net force on it becomes zero and the object continues to fall with 
a constant velocity, referred to as its terminal velocity.

Moving and falling
If a ball is thrown horizontally, the only force acting on the ball once it has been 
released is gravity (ignoring air resistance). As the force of gravity is the same 
regardless of the motion of the ball, the ball will still accelerate downwards at 
the same rate as if it were dropped. There will not be any  horizontal  acceleration 

Solution:
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as there is no net force acting horizontally. This means that while the ball’s ver-
tical velocity will change, its horizontal velocity remains the same throughout 
its motion.

It is the constant horizontal velocity and changing vertical velocity that give 
projectiles their characteristic parabolic motion.

Notice that the vertical distance travelled by the ball in each time period 
increases, but that the horizontal distance is constant.

The horizontal velocity remains the
same (i.e. there is no acceleration).

The vertical 
velocity 
increases
(i.e. object
accelerates).

Position of a ball at constant time intervals

Keep them separated
In modelling projectile motion, the vertical and horizontal components of the 
motion are treated separately. 
1. The total time taken for the projectile motion is determined by the  

vertical part of the motion as the projectile cannot continue to move hori-
zontally once it has hit the ground, the target or whatever else it might col-
lide with.

2. This total time can then be used to calculate the horizontal distance, or 
range, over which the projectile travels.

Sample problem 1.7

Imagine the helicopter described in sample problem 1.6 is not stationary, but 
is flying at a slow and steady speed of 20 m s−1 and is 100 m above the ground 
when the package is dropped.
(a) Calculate how long it takes the package to hit the ground.
(b) What is the range of the package?
(c) Calculate the vertical distance the package has fallen after 0.50 s, 1.0 s, 

1.5 s, 2.0 s, etc. until the package has reached the ground. (You may like 
to use a spreadsheet here.) Then calculate the corresponding horizontal 
distance, and hence draw a scale diagram of the package’s position at half-
second intervals.

 Remember, the horizontal and vertical components of the package’s motion 
must be considered separately.
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(a) In this part of the question the vertical component is important. Vertical 
component: u = 0 m s−1, s = 100 m, a = 9.8 m s−2, t = ?

 s = ut + 1
2

at2

100 m = 0 m s−1 × t + 1
2

(9.8 m s−2)t 2

      
100
4.9

 = t 2

  t = 4.52 s, rounded to 4.5 s

 (Note: Again, the positive square root is taken as we are concerned only 
with what happens after t = 0.)

(b) The range of the package is the horizontal distance over which it travels. It 
is the horizontal component of velocity that must be used here. 

 Horizontal component: u = 20 m s−1 (The initial velocity of the package is 
the same as the velocity of the helicopter in which it has been travelling.)

 a = 0 m s−2 (No forces act horizontally so there is no horizontal acceleration.)
 t  = 4.5 s (from part (a) of this example)
 s = ?

s  = ut + 
1
2

at 2

 = 20 m s−1 × 4.5 s + 0

 = 90 m
(c) 

TABLE 1.2 Vertical and horizontal components of the package’s motion

Vertical component Horizontal component

u = 0 m s−1, t = 0.50 s, a = 10 m s−2, s = ? u = 20 m s−1, t = 0.50 s, a = 0 m s−2, s = ?

   s = ut + 1
2

at2     s = ut + 1
2

at2

      = 0 m s−1 × 0.50 s + 1
2

(10 m s−2)(0.5 s)2     = 20 m s−1 × 0.50 s + 0

     = 1.2 m     = 10 m

Repeat the calculations shown in table 1.2 for t = 1.0 s, 1.5 s, 2.0 s, etc. to gain 
the results shown in table 1.3. The scale diagram of the package’s position is 
shown on page 22.

TABLE 1.3 Vertical and horizontal distance travelled over time

Time 
(s)

Vertical distance  
(m)

Horizontal distance  
(m)

 0.50 1.2 10

1.0 4.8 20

1.5 11 30

2.0 20 40

2.5 31 50

3.0 44 60

3.5 60 70

4.0 78 80

4.5 99 90

Solution:
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Revision question 1.7

A ball is thrown horizontally at a speed of 40 m s−1 from the top of a cliff into 
the ocean below and takes 4.0 seconds to land in the water. Air resistance can 
be ignored.
(a) What is the height of the cliff above sea level if the thrower’s hand releases 

the ball from a height of 2.0 metres above the ground?
(b) What horizontal distance did the ball cover?
(c) Calculate the vertical component of the velocity at which the ball hits the 

water.
(d) At what angle to the horizontal does the ball strike the water?

What goes up must come down
Most projectiles are set in motion with velocity. The simplest case is that of a 
ball thrown directly upwards. The only force acting on the ball is that of gravity 
(ignoring air resistance). The ball accelerates downwards. Initially, this results 
in the ball slowing down. Eventually, it comes to a halt, then begins to move 
downwards, speeding up as it goes.

Notice that, when air resistance is ignored, the motion of the ball is iden-
tical whether it is going up or coming down. The ball will return with the same 
speed with which it was projected. Throughout the motion illustrated in the 

Digital doc
Investigation 1.1
Predicting the range of a projectile
doc-18534
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figure below (and for which graphs are shown), the acceleration of the ball is a 
constant 10 m s−2 downwards. A common error made by physics students is to 
suggest that the acceleration of the ball is zero at the top of its flight. If this were 
true, would the ball ever come down?

(a) going up (b) going down

v v

The motion of a ball projected 
vertically upwards

s (m)

t (s)

(a)

v (m s−1)

t (s)

(b)

a (m s−2)

t (s)

(c)

−10

Graphs of motion for a ball thrown 
straight upwards

AS A MATTER OF FACT

The axiom ‘what goes up must come down’ applies equally so to bul-
lets as it does to balls. Unfortunately, this means that people sometimes 
get killed when they shoot guns straight up into the air. If the bullet left 
the gun at a speed of 60 m s−1, it will return to Earth at roughly the same 
speed. This speed is well and truly fast enough to kill a person who is hit 
by the returning bullet.

Sample problem 1.8

A dancer jumps vertically upwards with an initial velocity of 4.0 m s−1. Assume 
the dancer’s centre of mass was initially 1.0 m above the ground, and ignore air 
resistance.
(a) How long did the dancer take to reach her maximum height?
(b) What was the maximum displacement of the dancer’s centre of mass?
(c) What is the acceleration of the dancer at the top of her jump?
(d) Calculate the velocity of the dancer’s centre of mass when it returns to its 

original height above the ground.
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There are several ways of arriving at the same answer. As has been done 
in this example, it is always good practice to minimise the use of answers 
from previous parts of a question. This makes your answers more reliable, 
preventing a mistake made earlier on from distorting the accuracy of your 
later calculations. For this problem, assign up as positive and down as 
negative.

(a) u = 4.0 m s−1, a = −9.8 m s−2, v = 0 m s−1 (as the dancer comes to a halt at 
the highest point of the jump), t = ?

 v = u + at

0 m s−1 = 4.0 m s−1 + (−9.8 m s−2) × t

 t = 4.0 m s
9.8 m s

1

2

−

−

 = 0.41 s

 The dancer takes 0.41 s to reach her highest point.
(b) u = 4.0 m s−1, a = −9.8 m s−2, v = 0 m s−1 (as the dancer comes to a halt at 

the highest point of the jump), s = ?

 v2 = u2 + 2as

 (0 m s−1)2 = (4.0 m s−1)2 + 2(−9.8  m  s−2)s

 16 m = 19.6 s

 s = 0.82  m

 The maximum displacement of the dancer’s centre of mass is 0.80  m.
(c) At the top of the jump, the only force acting on the dancer is the force 

of gravity (the same as at all other points of the jump). Therefore the 
acceleration of the dancer is acceleration due to gravity: 9.8  m  s−2 
downwards.

(d) For this calculation, only the downwards motion needs to be investigated.

 u = 0  m  s−1 (as the dancer comes to a halt at the highest point of the jump), 
a = −9.8  m  s−2, s = −0.82  m (as the motion is downwards), v = ?

v2 = u2 + 2as

v2 = (0 m s−1)2 + 2(−9.8  m  s−2)(−0.82  m)

 v = −4.0 m s−1

 (Note: Here, the negative square root is used, as the dancer is moving 
downwards. Remember, the positive and negative signs show direction 
only.)

 The velocity of the dancer’s centre of mass when it returns to its original 
height is 4.0 m s−1 downwards.

Revision question 1.8

A basketball player jumps directly upwards so that his centre of mass reaches a 
maximum displacement of 50 cm.
(a) What is the velocity of the basketballer’s centre of mass when it returns to its 

original height above the ground?
(b) For how long was the basketballer’s centre of mass above its original 

height?

Solution:
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PHYSICS IN FOCUS

Hanging in mid air
Sometimes dancers, basketballers and high jumpers seem to hang in mid 
air. It is as though the force of gravity had temporarily stopped acting on 
them. Of course this is not so! It is only the person’s centre of mass that 
moves in a parabolic path. The arrangement of the person’s body can 
change the position of the centre of mass, causing the body to appear to 
be hanging in mid air even though the centre of mass is still following its 
original path.

High jumpers can use this effect to increase the height of their jumps. 
By bending her body as she passes over the bar, a high jumper can cause 
her centre of mass to be outside her body! This allows her body to pass 
over the bar, while her centre of mass passes under it. The amount of 
energy available to raise the high jumper’s centre of mass is limited, so 
she can raise her centre of mass only by a certain amount. This tech-
nique allows her to clear a higher bar than other techniques for the same 
amount of energy.

Croatian high jumper Ana Simic’s centre of mass passes under the bar, 
while her body passes over the bar!

Shooting at an angle
Generally, projectiles are shot, thrown or driven at some angle to the hori-
zontal. In these cases the initial velocity may be resolved into its horizontal 
and vertical components to help simplify the analysis of the motion.

If the velocity and the angle to the horizontal are known, the size of the com-
ponents can be calculated using trigonometry.

The motion of projectiles with an initial velocity at an angle to the horizontal 
can be dealt with in exactly the same manner as those with a velocity straight 
up or straight across. However, the initial velocity must be separated into its 
vertical and horizontal components.

θ
vhorizontal = v cos θ

vvertical = v sin θ
v

The velocity can be resolved 
into a vertical and a horizontal 
component.
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Sample problem 1.9

A stunt driver is trying to drive a car over a small river. The car will travel up a 
ramp (at an angle of 40°) and leave the ramp travelling at 22 m s−1. The river is 
50 m wide. Will the car make it?

40° 40°

50 m

riverve
locity

 = 22 m
 s

−1

Assign up as positive and down as negative.

Before either part of the motion can be examined, it is important to calculate 
the vertical and horizontal components of the initial velocity.

40°
vhorizontal = 22 cos 40°

= 17 m s−1

= 14 m s−1
vvertical = 22 sin 40°

v = 22 m s−1

Therefore the initial vertical velocity is 14  m  s−1 and the initial horizontal 
 velocity is 17  m  s−1.
In order to calculate the range of the car (how far it will travel horizontally), it 
is clear that the horizontal part of its motion must be considered. However, the 
vertical part is also important. The vertical motion is used to calculate the time 
in the air. Then, the horizontal motion is used to calculate the range.

TABLE 1.4 Calculating the horizontal and vertical components

Vertical component Horizontal component

(Use the first half of the motion — from 
take-off until the car has reached its 
highest point.)
u = 14  m  s−1, a = −9.8  m  s−2,
v = 0  m  s−1 (as the car comes to a 
vertical halt at its highest point),
t = ?
 v = u + at

 0 = 14  m  s−1 + (−9.8  m  s−2) × t

 t = 
14 m s

9.8 m s

1

2

−

−

 = 1.4  s

As this is only half the motion, the total 
time in the air is 2.8 s. (It is possible 
to double the time in this situation 
because we have ignored air resistance. 
The two parts of the motion are 
symmetrical.)

u = 17  m  s−1, t = 2.8  s (being twice the 
time taken to reach maximum height as 
calculated for the vertical component), 
a = 0  m  s−2, s = ?
 s = ut

 = 17  m  s−1 × 2.8  s

 = 48  m

Solution:

eModelling
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Therefore, the unlucky stunt driver will fall short of the second ramp and will land 
in the river. Maybe the study of physics should be a prerequisite for all stunt drivers!

Revision question 1.9

A hockey ball is hit towards the goal at an angle of 25° to the ground with an 
initial speed of 32  km  h−1.
(a) What are the horizontal and vertical components of the initial velocity of 

the ball?
(b) How long does the ball spend in flight?
(c) What is the range of the hockey ball?

Projectile motion calculations
Here are some tips for projectile motion calculations.

It helps to draw a diagram.
Always separate the motion into vertical and horizontal components.
Remember to resolve the initial velocity into its components if necessary.
The time in flight is the link between the separate vertical and horizontal 
components of the motion.
At the end of any calculation, check to see if the quantities you have calcu-
lated are reasonable.

The real world — including air resistance
So far in this chapter, the effects of air resistance have been ignored so that we can 
easily model projectile motion. The reason the force of air resistance complicates 
matters so much is that it is not constant throughout the motion. It depends on 
the velocity of the projectile, the surface area that is being hit by the air, the type of 
surface and even the spin of the projectile. For objects with the same surface and 
spin, air resistance increases as the speed of the object increases.

No matter what affects the amount of air resistance, one thing is always true 
— air resistance opposes the motion of the projectile. 

path of a
projectile
without air
resistance

path of a projectile
with air resistanceFa.r.

Fa.r.

Fa.r.

w

w

w

While the magnitude of air resistance changes throughout the motion, 
it always opposes the direction of the motion.

eModelling
Modelling a stunt driver
doc-0035

Weblink
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Uniform circular motion
Humans seem to spend a lot of time going around in circles. Traffic at round-
abouts, children on merry-go-rounds, cyclists in velodromes. If you stop to think 
about it, you are always going around in circles as a result of Earth’s rotation.

The satellites orbiting Earth, including the Moon, travel in ellipses. However, 
their orbits can be modelled as circular motion.

The motion of satellites around Earth can be modelled as circular motion with a 
constant speed.

Getting nowhere fast
Ralph has been a bad dog and has been chained up. To amuse himself, he runs 
in circles. Ralph’s owner, Julie, is a physics teacher. She knows that no matter 
how great Ralph’s average speed is, he always ends up in the same place, so his 
average velocity is always zero.

Instantaneous velocity
Although Ralph’s average velocity for a single lap is zero, his instantaneous 
velocity is continually changing. Velocity is a vector and has a magnitude and 
direction. While the magnitude of Ralph’s velocity may be constant, the direc-
tion is continually changing. At one point, Ralph is travelling east, so his instan-
taneous velocity is in an easterly direction. A short time later, he will be travelling 
south, so his instantaneous velocity is in a southerly direction.

If Ralph could maintain a constant speed, the magnitude of his velocity 
would not change, but the direction would be continually changing.

The speed is therefore constant and can be calculated using the formula 
v = x

t
, where v is the average speed, x is the distance travelled and t is the time 

interval. It is most convenient to use the period of the object travelling in a 
circle. Thus:

v = 
x
t

∆
∆

    = 
circumference

period

    = 
r

T
2π

where 
   r = radius of the circle 
T = period.
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Sample problem 1.10

Ralph’s chain is 7.0 m long and attached to a small post in the middle of the 
garden. It takes an average of 9 s to complete one lap.
(a) What is Ralph’s average speed?
(b) What is Ralph’s average velocity after three laps?
(c) What is Ralph’s instantaneous velocity at point A? (Assume he travels at a 

constant rate around the circle.)
(a) To calculate Ralph’s speed, we need to know how far he has travelled. 

Using the formula for the circumference of a circle (distance = 2πr):

distance = 2 × π × 7.0 m

 = 44 m.

 Now the average speed can be calculated.

v = 
x
t

 = 
44 m

9 s
 = 5 m s−1

 Ralph travels with an average speed of 5  m  s−1.
(b) After three laps, Ralph is in exactly the same place as he started, so his dis-

placement is zero. No matter how long he took to run these laps, his average

 velocity would still be zero, as vav = 
x
t

∆
∆

.

(c) Ralph’s velocity is a constant 5 m s−1 as he travels around the circle. At the 
instant in question, the magnitude of his instantaneous velocity is also  
5 m s−1. This means Ralph’s velocity is 5 m s−1 north.

Revision question 1.10

A battery operated toy car completes a single lap of a circular track in 15 s with 
an average speed of 1.3 m s−1. Assume that the speed of the toy car is constant.
(a) What is the radius of the track?
(b) What is the magnitude of the toy car’s instantaneous velocity halfway 

through the lap?
(c) What is the average velocity of the toy car after half of the lap has been 

completed?
(d) What is the average velocity of the toy car over the entire lap?

Changing velocities and accelerations
Any object moving in a circle has a continually changing velocity. Remember 
that although the magnitude of the velocity is constant, the direction is 
changing. As all objects with changing velocities are experiencing an accel-
eration, this means all objects that are moving in a circle are accelerating.

An acceleration can be caused only by an unbalanced force, so non-zero 
net force is needed to move an object in a circle. For example, a hammer 
thrower must apply a force to the hammer to keep it moving in a circle. When 
the hammer is released, it moves off with the velocity it had at the instant of 
release. The net force on the hammer is the gravitational force on it (neglecting 
the small amount of air resistance), and the hammer will experience projectile 
motion.

7.0 m

N

A

S

EW

Solution:

Unit 3 Uniform circular 
motion
Summary screen 
and practice 
questions

AOS 3

Topic 4

Concept 1

Unit 3

See more
Uniform circular 
motion

AOS 3

Topic 4

Concept 1



UNIT 3 30

The hammer is always accelerating while it moves in a circle.

In which direction is the force?
The figure at left shows diagrammatically the head of the hammer moving in a 
circle at two different times. It takes t seconds to move from A to B. To deter-
mine the acceleration, the change in velocity between these two points must 
be determined. Vector addition must be used to do this.

Δv = v2 − v1

Δv = v2 + (−v1).

Notice that when the Δv vector is transferred back to the original circle 
halfway between the two points in time, it is pointing towards the centre of the 
circle. (See the figure below.) (Such calculations become more accurate when 
very small time intervals are used; however, a large time interval has been used 
here to make the diagram clear.)

As a = 
v

t
∆

, the acceleration vector is in the same direction as Δv, but has a 

different magnitude and different units.

AB
v2

v2

−v1

v1

Δv
Δv

(a) (b)

(a) Vector addition (b) The change in velocity is towards the centre of the circle.

No matter which time interval is chosen, the acceleration vector always 
points towards the centre of the circle. So, in order for an object to have 

The direction in which the
hammer moves if let go

The direction in which the
hammer moves while being
spun around

As long as the thrower keeps 
turning, the hammer moves in 
a circle. When the hammer is 
released, it moves in a straight 
line.

Velocity vectors for a hammer 
moving in an anticlockwise 
circle

AB
v2 v1
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uniform circular motion, the acceleration of the object must be towards the 
centre of the circle. Such an acceleration is called centripetal acceleration. 
The word  centripetal literally means ‘centre-seeking’. As stated in Newton’s 
Second Law of Motion, the net force on an object is in the same direction as 
the acceleration (Fnet = ma). Therefore, the net force on an object moving with 
uniform circular motion is towards the centre of the circle. 

Remember that while the hammer thrower is exerting a force on the hammer 
head towards the centre of the circle, the hammer head must be exerting an 
equal and opposite force on the thrower away from the centre of the circle 
(according to Newton’s Third Law of Motion).

Calculating accelerations and forces
Using vector diagrams and the formulae a = v

t
∆  and Fnet = ma, it is possible 

to calculate the accelerations and forces involved in circular motion. How-
ever, doing calculations this way is tedious, and results can be inaccurate if the 
vector diagrams are not drawn carefully. It is much simpler to have a formula 
that will avoid these difficulties. The derivation of such a formula is a little 
challenging, but it is worth the effort!

By re-examining the two previous figures (see p. 30), it is possible to see that 
they both ‘contain’ isosceles triangles. These are shown at left.

Figure (a) is a diagram showing distances. It has the radius of the circle 
marked in twice. These radii form two sides of an isosceles triangle. The third 
side is formed by a line, or chord, joining point A with point B. It is the distance 
between the two points. When the angle θ is very small, the length of the chord 
is virtually the same as the length of the arc which also joins these two points. 
As this is a distance, its length can be calculated using s = vt.

Figure (b) is a diagram showing velocities. As the object was moving with 
uniform circular motion, the length of the vectors v2 and −v1 are identical and 
form two sides of an isosceles triangle. As both parts of the figure at left are 
derived from the bottom figure on page 30, both of the angles marked as θ are 
the same size. Therefore, the triangles are both isosceles triangles, containing 
the same angle, θ. This means they are similar triangles — they can be thought 
of as the same triangle drawn on two different scales. The figure below left 
shows these triangles redrawn to make this more obvious.

As the triangles are similar, the ratio of their sides must be constant, so:

v
vt
∆  = 

v
r

.

Multiplying both sides by v:

v
t

∆
 = v

r

2

.

As a = 
v

t
∆

:

⇒ a = 
v
r

2

.

This formula provides a way of calculating the centripetal acceleration of a 
mass moving with uniform circular motion having speed v and radius r.

If the acceleration of a known mass moving in a circle with constant speed 
has been calculated, the net force can be determined by applying Fnet = ma.

The magnitude of the net force can also be calculated using:

Fnet = ma = mv
r

2 .

Centripetal acceleration is the 
centre-directed acceleration of an 
object moving in a circle.

The triangles shown in parts (a) 
and (b) are both isosceles 
triangles.

A

rr
θ

B

(a)

v2

−v1

v1

v2

Δv

(b)

θ

The two triangles are similar 
triangles.

A

rr
θ

B
(a)

v v

Δv(b)

θ

vt



UNIT 3 32

Sample problem 1.11

A car is driven around a roundabout at a constant speed of 20 km h−1 (5.6 m s−1). 
The roundabout has a radius of 3.5 m and the car has a mass of 1200 kg.
(a) What is the magnitude and direction of the acceleration of the car?
(b) What is the magnitude and direction of the force on the car?
(a) v = 5.6 m s−1, r = 3.5 m, a = ?

a = 
v
r

2

 = 
(5.6 m s )

3.5 m

1 2−

 = 9.0 m s−2

 The car accelerates at 9.0 m s−2 towards the centre of the roundabout.
(b) There are two different formulae that can be used to calculate this answer.
  (i) Use the answer to (a) and substitute into Fnet = ma.

a = 9.0 m s−2, m = 1200 kg, Fnet = ?

Fnet = ma

 = 1200 kg × 9.0 m s−2

 = 1.1 × 104 N

 (ii) Use the formula Fnet = 
mv

r

2
.

 v = 5.6 m s−1, r = 3.5 m, m = 1200 kg, Fnet = ?

Fnet = 
mv

r

2

 = 
1200 kg (5.6 m s )

3.5 m

1 2−

 = 1.1 × 104 N

 Both methods give the force on the car as 1.1 × 104 N towards the centre of 
the roundabout.

 Sometimes it is not easy to measure the velocity of the object under-
going circular motion. However, this can be calculated from the radius of 
the circle and the time taken to complete one circuit using the equation 

 v = r
T

2π .

 a = v
r

2

⇒ a = 

r
T
r

2 2π⎛
⎝⎜

⎞
⎠⎟

 a = 
r

T
4 2

2

π

 Substituting this into Fnet = ma:

Fnet = 
m r

T
4 2

2

π
.

Solution:
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Revision question 1.11

Kwong (mass 60 kg) rides the Gravitron at the amusement park. This ride moves 
Kwong in a circle of radius 3.5 m, at a rate of one rotation every 2.5 s.
(a) What is Kwong’s acceleration?
(b) What is the net force acting on Kwong? (Include a magnitude and a  direction 

in your answer.)
(c) Draw a labelled diagram showing all the forces acting on Kwong.

Examples of forces that produce centripetal 
acceleration
Whenever an object is in uniform circular motion, the net force on that object 
must be towards the centre of the circle. Some examples of common situations 
involving forces producing centripetal acceleration follow.

Tension
In physics, tension is used to describe the force applied by an object that is 
being pulled or stretched.

(a) Tension contributes to the net force in many amusement park rides. (b) The 
net force acting on a compartment in the ride

(b)

Fnet

T1

T2

W

(a)

A component of the tension 
is the net force acting on the 
female skater when she is 
performing a ‘death roll’.

tension (T )

Not to scale

normal
reaction (N )

weight (W )

Fnet
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Friction
When a car rounds a corner, the sideways frictional forces contribute to the 
net force. The forwards frictional forces by the ground on the tyres keep the car 
moving, but if the sideways frictional forces are not sufficient, the net force on 
the car will not be towards the centre of the curve. In this situation, the net 
force is less than the force required to keep the car moving in a circle at this 
radius, and the car will not make it around the corner!

The formula Fnet = 
mv

r

2
 shows that as the velocity increases, the force 

needed to move in a circle greatly increases (Fnet ∝ v 2). This is why it is vital 
that cars do not attempt to corner while travelling too fast.

weight (W )

normal
reaction (N )

FfrictionFfriction

Ffriction

Fnet

Ffriction

N

N
N

The sideways frictional forces 
of the ground on the tyres 
enable a car to move around 
a corner.

Track athletes, cyclists and motorcyclists also rely on sideways frictional 
forces to enable them to move around corners. To increase the size of the side-
ways frictional force, which will therefore allow them to corner more quickly, 
they often lean into the corner. The lean also means that they are pushing on 
the surface at an angle, so the reaction force is no longer normal to the ground. 
It has a component towards the centre of their circular motion.

weight

Fnet

friction

reaction
Leaning into a corner increases 
the size of the net force, 
allowing a higher speed while 
cornering. The sideways 
friction is greater, and the 
reaction force of the ground 
has a component towards the 
centre of the circular motion.
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In velodromes, the track is banked so that a component of the normal 
reaction acts towards the centre of the velodrome, thus increasing the net force 
in this direction. As the centripetal force is larger, the cyclists can move around 
the corners faster than if they had to rely on friction alone.

Going around the bend
When a vehicle travels around a bend, or curve, at constant speed, its motion 
can be considered to be part of a circular motion. The curve makes up the arc 
of a circle. In order for a car to travel around a corner safely, the net force acting 
on it must be towards the centre of the circle.

Part (a) of the next figure shows the forces acting on a vehicle of mass m 
travelling around a curve with a radius, r, at a constant speed, v. The forces 
acting on the car are weight, W, friction and the normal reaction, N.

N

W

(a)

sideways
friction
(Ffriction)

Fnet

(b)

Ffriction

Fnet

N N sin θ

Ffriction cos θ

Wθ

(a) For the vehicle to take the corner safely, the net force must be towards the 
centre of the circle. (b) Banking the road allows a component of the normal 
reaction to contribute to the centripetal force.

On a level road the only force with a component towards the centre of the 
circle is the ‘sideways’ friction. This sideways friction makes up the whole of 
the magnitude of the net force on the vehicle. That is:

Fnet = sideways friction

    = 
mv

r

2

.

If you drive the vehicle around the curve with a speed so that 
mv

r

2
 is greater 

than the sideways friction, the motion is no longer circular and the vehicle will 
skid off the road. If the road is wet, sideways friction is less and a lower speed is 
necessary to drive safely around the curve.

If the road is banked at an angle θ towards the centre of the circle, a com-
ponent of the normal reaction N sin θ can also contribute to the net force. This 
is shown in diagram (b) above.

Fnet = Ffrictioncos θ + N sin θ

The larger net force means that, for a given curve, banking the road makes a 
higher speed possible.

Loose gravel on bends in roads is dangerous because it reduces the 
sideways friction force. At low speeds this is not a problem, but a vehicle 
travelling at high speed is likely to lose control and run off the road in a 
straight line.
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Sample problem 1.12

A car of mass 1280 kg travels around a bend with a radius of 12.0 m. The total 
sideways friction on the wheels is 16  400 N. The road is not banked. Calculate 
the maximum constant speed at which the car can be driven around the bend 
without skidding off the road.
The car will maintain the circular motion around the bend if:

Fnet = 
mv

r

2

 

where
v = maximum speed.
If v were to exceed this speed, Fnet < mv

r

2
, the circular motion could not be 

maintained and the vehicle would skid.

  Fnet = sideways friction = 16  400 N = 1280 kg × v
12.0 m

2

⇒ v 2 = 16  400 N × 12.0 m
1280 kg

      = 153.75 m2 s−2

     v = 12.4 m s−1

The maximum constant speed at which the vehicle can be driven around the 
bend is 12.4 m s−1.

Revision question 1.12

Calculate the maximum constant speed of the car in sample problem 1.12 (without 
skidding off the road) if the road is banked at an angle of 10° to the horizontal.

Inside circular motion
What happens to people and objects inside larger objects which are travelling 
in circles? The answer to this question depends on several factors.

Let’s think about passengers inside a bus. The sideways frictional forces by 
the road on the bus tyres act towards the centre of the circle, which increases 
the net force on the bus and keeps the bus moving around the circle. If the pas-
sengers are also to move in a circle (therefore keeping the same position in the 
bus) they need, too, to have a net force towards the centre of the circle. Without 
such a force, they would continue to move in a straight line and probably hit 
the side of the bus! Usually the friction between the seat and a passenger’s legs 
is sufficient to prevent this happening.

However, if the bus is moving quickly, friction alone may not be adequate. 
In such cases, passengers may grab hold of the seat in front, thus adding a 
force of tension through their arms. Hopefully, the sum of the frictional force 
of the seat on a passenger’s legs and the horizontal component of tensile force 
through the passenger’s arms will provide a large enough centripetal force to 
keep that person moving in the same circle as the bus!

Sample problem 1.13

When travelling around a roundabout, John notices that the fluffy dice sus-
pended from his rear-vision mirror swing out. If John is travelling at 8.0 m s−1 
and the roundabout has a radius of 5.0 m, what angle will the string connected 
to the fluffy dice (mass 100 g) make with the vertical?

When John enters the roundabout, the dice, which are hanging straight down, 
will begin to move outwards. As long as John maintains a constant speed, they 

Solution:

Solution:
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will reach a point at which they become stationary at some angle to the ver-
tical. At this point, the net force on the dice is the centripetal force. Because the 
dice appear stationary to John, they must be moving in the same circle, with 
the same speed, as John and his car.

v = 8.0 m s−1, r = 5.0 m, m = 0.100 kg

Consider the vertical components of the forces.

The acceleration has no vertical component.

⇒ mg = T cos θ

    ⇒ T = 
mg

cos θ  (1)

Consider the horizontal components of the forces.

  Fnet = 
mv

r

2
 = T sin θ

⇒ 
mv

r

2
 = T sin θ (2)

To solve the simultaneous equations, substitute for T (from equation (1)) into 
equation (2).

        
mv

r
mg

 
cos 

2

θ
=  × sin θ

 ⇒ 
mv

r

2

 = mg tan θ

 ⇒ 
v
rg

2

 = tan θ

⇒ (8.0 m s )
5.0 m 9.8 N kg

1 2

1×

−

−  = tan θ

 ⇒ θ = 53°

Revision question 1.13

A 50 kg circus performer grips a vertical rope with her teeth and sets herself 
moving in a circle with a radius of 5.0 m at a constant horizontal speed of 3.0 m  s−1.
(a) What angle does the rope make the vertical?
(b) What is the magnitude of the tension in the rope?

Rope

Circular path

Performer’s
centre of mass

T cos θ

T sin θ

T

mg

θ
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Non-uniform circular motion
So far, we have considered only what happens when the circular motion is 
carried out at a constant speed. However, in many situations this is not the 
case. When the circle is vertical, the effects of gravity can cause the object to 
go slower at the top of the circle than at the bottom. Such situations can be 
examined either by analysing the energy transformations that take place or by 
applying Newton’s laws of motion.

When a skateboarder enters a half-pipe from the top, that person has a cer-
tain amount of potential energy, but a velocity close to zero. At the bottom of 
the half-pipe, some of the gravitational potential energy of the skateboarder 
has been transformed into kinetic energy. As long as the person’s change in 
height is known, it is possible to calculate the speed at that point.

Sample problem 1.14

A skateboarder (mass 60  kg) enters the half-pipe at point A, as shown in the 
figure at left. (Assume the frictional forces are negligible.)
(a) What is the skateboarder’s speed at point B?
(b) What is the net force on the skateboarder at B?
(c) What is the normal reaction force on the skateboarder at B?
(a) At point A the skateboarder has potential energy, but no kinetic energy. At 

point B, all the potential energy has been converted to kinetic energy. Once the 
kinetic energy is known, it is easy to calculate the velocity of the skateboarder.

 m = 60  kg, Δh = 4.0  m, g = 9.8  m  s−2

 decrease of potential energy from A to B = increase of kinetic energy from A to B

 −(PEB − PEA) = KEB − KEA

−(mghB − mghA) = 
1
2

mvB
2 − 0

 −mg (hB − hA) = 
1
2

mv2

 Cancelling m from both sides:

 −g (hB − hA) = 
1
2

v2

−9.8 (0  m − 4.0  m) = 
1
2

v2

 v 2 = 78.4  m2 s−2

 v = 8.854  m  s−1, rounded to 8.9  m  s−1.

 The skateboarder’s speed at B is 8.9  m  s−1.

(b) The formula Fnet = 
mv

r

2
can still be used for any point of the centripetal

 motion. It must be remembered, however, that the force will be different at 
each point as the velocity is constantly changing.

 m = 60 kg, r = 4.0 m, v = 8.9 m s−1

Fnet = 
mv

r

2

 = 
60kg (8.854 ms )

4.0 m

1 2× −

 = 1176  N, rounded to 1200  N

  The net force acting on the skateboarder at point B is 1200  N upwards.

A

B

4.0 m

Solution:

Unit 3 Motion in a 
horizontal plane
Summary screen 
and practice 
questions

AOS 3

Topic 4

Concept 2
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(c) As there is more than one force acting on the skateboarder, it helps to draw 
a diagram. (See the figure at left.)

Fnet = N (normal reaction force) 
  + W (weight) (when forces are written as vectors)

Fnet = N − W (when direction is taken into account using sign)

 N = Fnet + mg

 = 1200  N + 60  kg × 9.8  m  s−2

 = 1788  N, rounded to 1800  N

  The normal reaction force acting on the skateboarder at point B is 1800  N 
upwards. This is larger than the normal reaction force if the skateboarder 
were stationary. This causes the skateboarder to experience a sensation of 
heaviness.

Revision question 1.14

A roller-coaster car travels through the bottom of a dip of radius 9.0  m at a speed 
of 13  m  s−1. 
(a) What is the net force on a passenger of mass 60  kg?
(b) What is the normal reaction force on the passenger by the seat?
(c) Compare the size of the reaction force to the weight force.

Amusement park physics
The experience of heaviness described in 
the previous section, when the reaction 
force is greater than the weight force, 
occurs on a roller coaster when the roll-
er-coaster car travels through a dip at the 
bottom of a vertical arc. When the car is 
at the top of a vertical arc, the passengers 
experience a feeling of being lighter. How 
can this be explained?

When the roller-coaster car is on the top of the track, the reaction force is 
upwards, and the weight force and the net force are downwards. So, 

Fnet = ma = mg − N. 

For circular motion, the acceleration is centripetal and is given by the 

expression 
v
r

2
:

mv
r

mg N
2

= −

Sample problem 1.15

A passenger is in a roller-coaster car at the top of a circular arc of radius 9.0 m.
(a) At what speed would the reaction force on the passenger equal half their 

weight force?
(b) What happens to the reaction force as the speed increases?
(c) What would the passenger experience?

weight = mg

normal reaction
force

acceleration

Forces acting on the 
skateboarder

a

N

mg



UNIT 3 40

(a) Let N
mg

r
2

, 9.0 m= = .

 Using mv
r

mg N
2

= − ,

 

mv
r

mg
mg

v
r

g
2

2

2

2

= −

=

 v
gr
2

=

 9.8 9.0
2

= ×

 = 6.6  m  s−1

(b) Rearranging 
mv

r

2
= mg − N gives N = mg − mv

r

2
.

 The weight force, mg , is constant, so as the speed, v, increases, the reaction 
force, N, gets smaller. 

(c) The reaction force is less than the weight force, so the passenger will feel 
lighter.

The reaction force is a push by the track on the wheels of the roller-coaster 
car. The track can only push up on the wheels; it cannot pull down on the 
wheels to provide a downwards force. So as the speed increases, there is a 
limit on how small the reaction force can be. That smallest value is zero. 
What would the passenger feel? And what is happening to the roller-coaster 
car?

When the reaction force is zero, the passenger will feel as if they are floating 
just above the seat. They will feel no compression in the bones of their back-
side. For the car, at this point it has lost contact with the track. Any attempt to 
put on the brakes will not slow down the car, as the frictional contact with the 
track depends on the size of the reaction force. No reaction force means no 
friction.

Modern roller-coaster cars have two sets of wheels, one set above the track 
and one set below the track, so that if the car is moving too fast, the track can 
supply a downward reaction force on the lower set of wheels.

The safety features of roller coasters cannot be applied to cars on the road. 
If a car goes too fast over a hump on the road, the situation is potentially very 
dangerous. Loss of contact with the road means that turning the steering wheel 
to avoid an obstacle or an oncoming car will have no effect whatsoever. The car 
will continue on in the same direction.

Revision question 1.15

(a) A car of mass 800 kg slows down to a speed of 4.0 m s−1 to travel over a speed 
hump that forms the arc of a circle of radius 2.4 m. What normal reaction 
force acts on the car at the top of the speed hump?

(b) At what minimum speed would a car of mass 1000 kg have to travel to 
momentarily leave the road at the top of the speed hump described in 
part  (a)? (To leave the road the normal reaction would have to have 
decreased to zero.)

Solution:
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Chapter review
Unit 3 Newton’s laws of motion

Circular motion

Sit Topic test

AOS 3

Topics 1 & 4

Summary
 ■ Motion can be described in terms of distance, dis-

placement, speed, velocity, acceleration and time.
 ■ Distance is a measure of the length of the path taken 

when an object changes position.
 ■ Displacement is a measure of the change in position 

of an object. 
 ■ Speed is a measure of the rate at which an object 

moves over a distance. 

average speed = 
distance travelled

time interval

 ■ Velocity is a measure of the rate of displace ment, or 
the rate of changing position.

vav = 
x
t

∆
∆

 ■ Acceleration is the rate of change of velocity.

aav = 
v
t

∆
∆

 ■ Displacement, velocity and acceleration are vector 
quantities.

 ■ Instantaneous speed is the speed at a particular 
instant of time. Instantaneous velocity is the velocity 
at a particular instant of time.

 ■ The velocity (or speed) of an object at an instant is 
equal to the gradient of the graph of position versus 
time (or distance versus time) for that instant.

 ■ The acceleration of an object at an instant is equal to 
the gradient of the graph of velocity versus time for 
that instant.

 ■ The displacement of an object during a time interval 
is equal to the area under the velocity–time graph 
representing the time interval.

 ■ The change in velocity of an object during a time 
interval is equal to the area under the acceleration–
time graph representing the time interval.

 ■ The motion of an object moving in a straight line can 
be described algebraically using several formulae 
including:

 v = u + at

 s = 
1
2

 (u + v)t 

 s = ut + 
1
2

 at 2

 s = vt − 
1
2

 at 2

v2 = u2 + 2as.

 ■ Newton’s three laws of motion can be applied to 
explain, predict or analyse situations in which one or 
more forces act on an object or system of objects. 

 – Newton’s First Law of Motion states that every 
object continues in its state of rest or uniform 
motion unless made to change by a non-zero net 
force. 

 – Newton’s second Law of Motion can be expressed 
algebraically as 

Fnet = ma or Fnet = 
p
t

∆
∆

.

 – Newton’s Third Law of Motion states that when-
ever an object applies a force to a second object, 
the second object applies an equal and opposite 
force to the first object. 

Fon A by B = −Fon B by A.

 ■ The forces acting on a moving vehicle include weight, 
normal reaction, driving force and resistive forces 
including air resistance and road friction. The motion 
of the car depends on the net force acting on the 
vehicle.

 ■ For a vehicle on a slope, analysis of forces acting 
on, and motion of, the vehicle can be undertaken 
by resolving the forces into two components — one 
parallel to the slope and one perpendicular to the 
slope.

 ■ Momentum is the product of the mass of an object 
and its velocity. Momentum is a vector quantity.

 ■ There are two forces acting on a projectile in flight: 
gravity acting downwards and air resistance acting in 
the opposite direction to that of the motion. In mod-
elling projectile motion, it is helpful to ignore the air 
resistance.

 ■ To analyse the motion of a projectile, the equations 
of motion with constant acceleration can be applied 
to the horizontal and vertical components of the 
motion separately.

 ■ An object projected horizontally near Earth’s sur-
face travels in a parabolic path if air resistance is 
negligible.

 ■ The average speed and velocity of an object moving 
in a circle is quite different from its instantaneous 
speed and velocity. The speed v of an object moving 
at constant speed in a circle of radius r is given by the 

equation v = r2
Τ
π

 where T is the period of the circular 
motion.

 ■ The acceleration of an object in uniform circular 
motion is always directed towards the centre of the 
circle. It is called centripetal acceleration.
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 ■ The magnitude of the acceleration a of an object in 
uniform circular motion can be calculated using the 
equations:

a = v
r

2
  or  a = r

T
4 2

2
π .

 ■ The net force on an object in uniform circular motion 
is always towards the centre of the circle.

Questions
In answering the questions on the following pages, 
assume, where relevant, that the magnitude of the 
gravitational field at Earth’s surface is 9.8 N kg−1.

Describing and analysing motion
 1. Two physics students are trying to determine the 

instantaneous speed of a bicycle 5.0  m from the 
start of a 1000  m sprint. They use a stopwatch to 
measure the time taken for the bicycle to cover 
the first 10  m. If the acceleration was constant, 
and the measured time was 4.0  s, what was the 
instantaneous speed of the bicycle at the 5.0  m 
mark?

 2. When a netball is thrown straight up on a still day, 
what is its acceleration at the very top of its flight?

 3. A car travelling north at a speed of 40 km h−1 turns 
right to head due east at a speed of 30 km h−1. This 
change in direction and speed takes 2.0 s. Calculate 
the average acceleration of the car in:
(a) km h−1 s−1 (b) m s−2.

Newton’s laws of motion
 4. When a stationary car is hit from behind by another 

vehicle at moderate speed, headrests behind the 
occupants reduce the likelihood of injury. Explain 
in terms of Newton’s laws how they do this.

 5. It is often said that seatbelts prevent a pas senger 
from being thrown forward in a car col lision. What 
is wrong with such a statement?

 6. Draw a sketch showing all of the forces acting on a 
tennis ball while it is: 
(a) falling to the ground
(b) in contact with the ground just before 

rebounding upwards
(c) on its upward path after bouncing on the 

ground.
 The length of the arrows representing the forces 
should give a rough indication of rela tive size.

 7. A coin is allowed to slide with a constant velocity 
down an inclined plane as shown. Which of the 
arrows A to G on the diagram rep resents the 
directio n of each of the following? If none of the 
directions is correct, write X.
(a) The weight of the coin
(b) The normal reaction
(c) The net force

B

A C

D

F

G

E

 8. A child pulls a 4.0 kg toy cart along a hori zontal path 
with a rope so that the rope makes an angle of 30° 
with the horizontal. The ten sion in the rope is 12 N.
(a) What is the weight of the toy cart?
(b) What is the component of tension in the 

direction of motion?
(c) What is the magnitude of the normal reaction?

 9. What is the matching ‘reaction’ to the gravitational 
pull of Earth on you?

Applying Newton’s Second Law of Motion
 10. A dodgem car of mass 200 kg is driven due south 

into a rigid barrier at an initial speed of 5.0 m s−1. 
The dodgem rebounds at a speed of 2.0 m s−1. It is 
in contact with the barrier for 0.20 s. Calculate:
(a) the average acceleration of the car during its 

interaction with the barrier
(b) the average net force applied to the car during 

its interaction with the barrier.
 11. The graph below describes the motion of a 40 t 

(4.0 × 104 kg) train as it travels between two 
neighbouring railway stations. The total friction 
force resisting the motion of the train while the 
brakes are not applied is 8000 N. The brakes are 
not applied until the final 20 s of the journey.

Time (s)

S
pe

ed
 (m

 s
–1

)

20

10

0
20 40 60 80 100 120

(a) What is the braking distance of the train?
(b) A cyclist travels between the stations at a 

constant speed, leaving the first station and 
arriving at the second station at the same time 
as the train. What is the con stant speed of the 
cyclist?
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(c) What forward force is applied to the train by 
the tracks while it is accelerating?

(d) What additional frictional force is applied to 
the train while it is braking?

 12. A 1500 kg car is resting on a slope inclined at 20° 
to the horizontal. It has been left out of gear, so 
the only reason that it doesn’t roll down the hill is 
that the handbrake is on.
(a) Draw a labelled diagram showing the forces 

acting on the car.
(b) Calculate the magnitude of the normal 

reaction force.
(c) What is the net force acting on the car?
(d) What is the magnitude of the frictional force 

acting on the car?
 13. An experienced downhill skier with a mass of 

60 kg (including skis) moves in a straight line 
down a slope inclined at 30° to the horizontal with 
a constant speed of 15 m s−1.
(a) What is the direction of the net force acting on 

the skier?
(b) What is the magnitude of the sum of the air 

resistance and frictional forces opposing the 
skier’s motion?

 14. A waterskier of mass 70 kg is towed in a north erly 
direction by a speedboat with a mass of 350 kg. 
The frictional forces opposing the for ward motion 
of the waterskier total 240 N.
(a) If the waterskier has an acceleration of 

2.0 m s−2 due north, what is the tension in the 
rope towing the waterskier?

(b) If the frictional forces opposing the for ward 
motion of the speedboat total 600 N, what is 
the thrust force applied to the boat due to the 
action of the motor?

 15. A 4.0 kg magpie flies towards a very tight plastic 
wire on a clothes line. The wire is perfectly 
horizontal and is stretched between poles 4.0 m 
apart. The magpie lands on the centre of the wire, 
depressing it by a vertical distance of 4.0 cm. What 
is the magnitude of the tension in the wire?

 16. An old light globe hangs by a wire from the roof of 
a train. What angle does the globe make with the 
vertical when the train is accel erating at 1.5 m s−2?

Projectile motion
 17. A ball has been thrown directly upwards. Draw the 

ball at three points during its flight (going up, at the 
top and going down) and mark on the diagrams all 
the forces acting on the ball at each time.

 18. Describe the effects of air resistance on the motion 
of a basketball falling vertically from a height.

 19. Ignoring air resistance, the acceleration of a 
projectile in flight is always the same, whether it is 
going up or down. Use graphs of motion to show 
why this is the case.

 20. In each of the cases shown below, calculate 
the magnitude of the vertical and horizontal 
components of the velocity.

50°

v = 20 m s–1
(a)

23°

v = 11 m s–1
(b)

v = 5 m s–1

(c) (d)

v = 10 km h–1

v = 33 m s–1

(e)

60°

 21. Explain why the horizontal component of velocity 
remains the same when a projectile’s motion is 
modelled.

 22. While many pieces of information relating to 
the vertical and horizontal parts of a particular 
projectile’s motion are different, the time is always 
the same. Explain why this is so.

 23. A cube-shaped parcel of flour with a volume about 
the size of a refrigerator is dropped from a height 
of 500 m from a helicopter travelling horizontally 
at a speed of 20 m s−1.
(a) Describe the effects of air resistance on:
 (i)  the horizontal component of the motion 

of the parcel
 (ii)  the vertical component of motion of the 

parcel.
(b) Which of the horizontal or vertical 

components of the motion of the parcel is 
likely to experience the greater air resistance 
during:

 (i) the first 2 s of its fall
 (ii) the final 2 s of its fall?

  Give reasons for each answer.
 24. A ball falls from the roof-top tennis court of an 

inner city building. This tennis court is 150 m 
above the street below. (Assume the ball has no 
initial velocity and ignore air resistance.)
(a) How long would the ball take to hit the street?
(b) What would the vertical velocity of the ball be 

just prior to hitting the ground?
 25. After taking a catch, Ricky Ponting throws the 

cricket ball up into the air in jubilation.
(a) The vertical velocity of the ball as it leaves his 

hands is 18 m s−1. How long will the ball take 
to return to its original position?

(b) What was the ball’s maximum vertical 
displacement?
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(c) Draw vectors to indicate the net force on the 
ball (ignoring air resistance)

 (i) the instant it left Ponting’s hands
 (ii) at the top of its flight
 (iii) as it returns to its original position.

 26. The metal shell of a wrecked car (mass 500 kg) 
is dropped from a height of 10 m when the 
electromagnet holding it is turned off.
(a) What was the vertical component of the 

velocity of the car just before it hit the ground?
(b) How long did the car take to fall?
(c) If the electromagnet was moving horizontally 

at a constant speed of 0.5 m s−1 as it was 
turned off, how far (horizontally) did the car 
land from the point at which it was dropped?

(d) What was the velocity of the car just before 
it hit the ground? Include a direction in your 
answer.

(e) What was the magnitude and direction of the 
net force acting on the car:

 (i)  while it was attached to the moving 
electromagnet

 (ii) while it was falling?
 27. A car is travelling along the freeway at a speed of 

100 km h−1. Seeing an accident ahead, the driver 
slams on the brakes. A tissue box flies forward 
from the back shelf.
(a) Explain, in terms of Newton’s laws, why the 

tissue box continued to move when the car 
stopped.

(b) What was the velocity of the tissue box as it 
left the shelf?

(c) The tissue box flew through the interior of 
the car and hit the windscreen, a horizontal 
distance of 2.5 m from the back shelf. What 
vertical distance had the tissue box fallen 
in this time? State any assumptions that 
you have made in modelling the motion of 
the box.

(d) Why is it important to secure all items when 
travelling in a car?

 28. A friend wants to get into the Guinness Book of 
Records by jumping over 11 people on his push 
bike. He has set up two ramps as shown below, 
and has allowed a space of 0.5 m for each person 
to lay down in. In practice attempts, he has 
averaged a speed of 7.0 m s−1 at the end of the 
ramp. Will you lay down as the eleventh person 
between the ramps?

45°

v

you

 29. You have entered the javelin event in your school 
athletics competition. Not being a naturally 
talented thrower, you decide to use your brain 
to maximise your performance. Using your 
understanding of the principles of projectile 
motion, decide on the best angle to release your 
javelin. Back up your answer with calculations.

 30. A skateboarder jumps a horizontal distance of 
2 m, taking off at a speed of 5 m s−1. The jump 
takes 0.42 s to complete.
(a) What was the skateboarder’s initial horizontal 

velocity?
(b) What was the angle of take-off?
(c) What was the maximum height above the 

ground reached during the jump?
 31. During practice, a young soccer player shoots for 

goal. The short goalkeeper is able to stop the ball only 
if it is more than 30 cm beneath the cross-bar. The ball 
is kicked at an angle of 45° and a speed of 9.8 m s−1. 
The arrangement of the players is shown below.

v =
 9.

8 m
 s

–1

45°

0.30 m
2.0 m

7.0 m

(a) How long does it take the ball to reach the top 
of its flight?

(b) How far vertically and horizontally has the ball 
travelled at this time?

(c) How long does it take the ball to reach the 
soccer net from the top of its flight?

(d) Will the ball go into the soccer net, over it, or 
will the goalkeeper stop it?

 32. A motocross rider rides over the jump shown 
below at a speed of 50 km h−1.
(a) How long does it take the bike to reach the top 

of its flight?
(b) How far vertically and horizontally has the 

bike travelled at this time?
(c) How long does it take the bike to reach the 

ground from the top of its flight?
(d) What is the total range of the jump?

v = 50 km h–1

35°
0.8 m
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 33. A waterskier at the Moomba Masters competition 
in Melbourne leaves a ramp at a speed of 
50  km  h−1 and at an angle of 30°. The edge of the 
ramp is 1.7  m above the water. Calculate:
(a) the range of the jump
(b) the velocity at which the jumper hits the 

water.
(Hint: Split the waterskier’s motion into two 
sections, before the highest point and after 
the highest point, to avoid solving a quadratic 
equation.)

 34. A gymnast wants to jump a distance of 2.5  m, 
leaving the ground at an angle of 28°. With what 
speed must the gymnast take off? 

 35. A horse rider wants to jump a 3.0  m wide stream. 
The horse can approach the stream with a speed 
of 7  m  s−1. At what angle must the horse take off? 
(Hint: You will need to use trigonometric identities 
from mathematics, or model the situation using a 
spreadsheet to solve this problem.)

Uniform circular motion
 36. A jogger, of mass 65  kg, runs around a circular 

track of radius 120  m with an average speed of 
6.0 km h−1.
(a) What is the centripetal acceleration of the 

jogger?
(b) What is the net force acting on the jogger?

 37. At the school fete, Lucy and Natasha have a ride 
on the merry-go-round. The merry-go-round 
completes one turn every 35 s. Natasha’s horse 
is 2.5  m from the centre of the ride, while Lucy’s 
horse is a further 70  cm out. Which girl would 
experience the greatest centripetal acceleration? 
Support your answer with calculations.

 38. At a children’s amusement park, the miniature 
train ride completes a circuit of radius 350  m, 
maintaining a constant speed of 15 km h−1.
(a) What is the centripetal acceleration of the 

train?
(b) What is the net force acting on a 35 kg child 

riding on the train?
(c) What is the net force acting on the 1500 kg 

train?
(d) Explain why the net forces acting on the child 

and the train are different and yet the train 
and the child are moving along the same path.

 39. The toy car in a slot car set runs on a circular track. 
The track has a radius of 65 cm, and the 0.12 kg 
car completes one circuit in 5.2 s.
(a) What is the centripetal acceleration of the car?
(b) What is the net force acting on the car?
(c) Draw a labelled diagram showing all the 

forces acting on the car. Also include the 
direction and magnitude of the net force on 
your diagram.

 40. When a mass moves in a circle, it is subject to 
a net force. This force acts at right angles to the 
direction of motion of the mass at any point in 
time. Use Newton’s laws to explain why the mass 
does not need a propelling force to act in the 
direction of its motion.

 41. Explain why motorcyclists lean into bends.
 42. A rubber stopper of mass 50.0  g is whirled in a 

horizontal circle on the end of a 1.50  m length of 
string. The time taken for ten complete revolutions 
of the stopper is 8.00 s. The string makes an angle 
of 6.03° with the horizontal. Calculate:
(a) the speed of the stopper
(b) the centripetal acceleration of the stopper
(c) the net force acting on the stopper
(d) the magnitude of the tension in the string.

 43. A ball is tied to the end of a string and whirled in a 
horizontal circle of radius 2.0 m. The string makes 
an angle of 10° with the horizontal. The tension in 
the string is 12 N.
(a) Calculate the magnitude of the centripetal 

force acting on the ball.
(b) If the mass of the ball is 200  g, what is its 

speed?
(c) What is the period of revolution of the ball?

 44. Carl is riding around a corner on his bike at 
a constant speed of 15 km h−1. The corner 
approximates part of a circle of radius 4.5 m. The 
combined mass of Carl and his bike is 90 kg. Carl 
keeps the bike in a vertical plane.
(a) What is the net force acting on Carl and his bike?
(b) What is the sideways frictional force acting on 

the tyres of the bike?
(c) Carl rides onto a patch of oil on the road; 

the sideways frictional forces are now 90% of 
their original size. If Carl maintains a constant 
speed, what will happen to the radius of the 
circular path he is taking?

 45. A cyclist rounds a bend. The surface of the road is 
horizontal. The cyclist is forced to lean at an angle 
of 20° to the vertical to ‘only just’ take the bend 
successfully. The total sideways frictional force on 
the tyres is 360 N. The cycle has a mass of 20 kg. 
What is the mass of the cyclist?

 46. A road is to be banked so that any vehicle can take 
the bend at a speed of 30 m s−1 without having to 
rely on sideways friction. The radius of curvature 
of the road is 12 m. At what angle should it be 
banked?

 47. A car of mass 800 kg travels over the crest of a 
hill that forms the arc of a circle, as shown in the 
following figure.
(a) Draw a labelled diagram showing all the 

forces acting on the car.
(b) The car travels just fast enough for the car to 

leave the ground momentarily at the crest of 
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the hill. This means the normal reaction force 
is zero at this point.

 (i)  What is the net force acting on the car at 
this point?

 (ii) What is the speed of the car at this point?

v

r = 4.0 m

 48. A gymnast, of mass 65 kg, who is swinging on the 
rings follows the path shown in the figure at right.
(a) What is the speed of the gymnast at point B, if 

he is at rest at point A?

(b) What is the centripetal force acting on the 
gymnast at point B?

(c) Draw a labelled diagram of the forces acting 
on the gymnast at point B. Include the 
magnitude of all forces.

B

A

4.0 m

∆h = 1.0 m



REMEMBER

Before beginning this chapter, you should be able to:
 ■ use Newton’s three laws of motion to explain movement
 ■ apply the energy conservation model to energy transfers 
and transformations

 ■ model work as the product of force and distance travelled 
in the direction of the force for a constant force

 ■  equate the work done on an object by a net force to the 
object’s change in kinetic energy

 ■  use the area under a force–distance (or displacement) 
graph to determine work done by a force with changing 
magnitude

 ■  define kinetic energy and strain potential energy.

KEY IDEAS

After completing this chapter, you should be able to:
 ■ define impulse and momentum in an isolated system
 ■ relate impulse to a change in momentum

 ■  analyse collisions between objects moving along a 
straight line in terms of impulse and momentum  
transfer

 ■  apply the Law of Conservation of Momentum to straight 
line collisions

 ■  analyse collisions in terms of energy transfers and 
transformations 

 ■  analyse energy transfers and transformations in which 
work is done by a force in one dimension

 ■  analyse energy transfers and transformations during 
interactions between objects and springs that obey 
Hooke’s Law

 ■  describe the Law of Conservation of Energy and apply it 
to collisions between objects moving in a straight line

 ■  describe the energy lost from a system of objects during 
a collision and explain the loss in terms of the Law of 
Conservation of Energy

 ■  analyse elastic and inelastic collisions in terms of energy 
transfer and conservation of kinetic energy.

2 Collisions and other 
interactions

CHAPTER

The front crumple zone of a car is designed to increase the duration of a collision. It also allows the kinetic energy of 
the car to be transformed into forms of energy that are less harmful to the human body.
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Impulse and momentum in a collision
Newton’s second Law of Motion describes how the effect of a net force on an 
object depends on its mass. In sample problem 1.4, it was useful to express 
Newton’s second law in terms of acceleration. However, it is sometimes useful 
to express it in terms of the change in momentum of an object. That is:

       Fnet = 
p
t

∆
∆

⇒ Fnet ∆t = ∆p

⇒ Fnet ∆t = m∆v.  (provided the mass is constant)

The product Fnet ∆t is called the impulse of the net force. Impulse is a 
vector quantity which has SI units of N s. Calculations can be carried out to 
show that

1  N  s = 1  kg  m  s−1.

Thus, the effect of a net force on the motion of an object can be sum marised 
by the statement:

impulse = change in momentum.

Sample problem 2.1

A 1200  kg car collides with a concrete wall at a speed of 15  m  s−1 and takes 
0.06  s to come to rest.
(a) What is the change in momentum of the car?
(b) What is the impulse on the car?
(c) What is the magnitude of the force exerted by the wall on the car?
(d) What would be the magnitude of the force exerted by the wall on the car if 

the car bounced back from the wall with a speed of 3.0  m  s−1 after being in 
contact for 0.06  s?

(a) Assign the initial direction of the car as positive.

m = 1200  kg, u = 15  m  s−1, v = 0  m  s−1, ∆t = 0.06  s

∆p = mv – mu

 = m (v – u)

 = 1200  kg (0 – 15)  m  s−1

 = 1200 × –15 kg  m  s–1

 = –1.8 × 104 kg  m  s–1

 The change in momentum is 1.8 × 104  kg  m  s–1 in a direction  opposite to 
the original direction of the car.

(b) Impulse on the car = change in momentum of the car

 = –1.8 × 104  kg  m  s–1

 The impulse on the car is 1.8 × 104  N  s in a direction opposite to the orig-
inal direction of the car.

(c) Magnitude of impulse = F∆t

⇒ 1.8 × 104  N  s = F × 0.06  s

 ⇒ F = 
10  N

0.06 s

41.8 ×

       = 3.0 × 105  N

Impulse is the product of a force 
and the time interval over which it 
acts. Impulse is a vector quantity 
with SI units of N s.

Solution:
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(d) In this case, v = –3.0  m  s–1.

Impulse = m∆v

 = 1200 kg (–3 – 15) m  s−1

 = 1200 × –18  kg  m  s–1

 = –2.16 × 104  N  s

⇒ 2.16 × 104  N  s = F∆t 

⇒ 2.16 × 104  N  s = F × 0.06 s

 ⇒ F = 
2.16 10  N

0.06 s

4×

 = 3.6 × 105  N

Revision question 2.1

A dodgem car of mass 200  kg strikes a barrier head-on at a speed of 8.0  m  s−1 due 
west and rebounds in the opposite direction with a speed of 2.0  m  s–1.
(a) What is the impulse delivered to the dodgem car?
(b) If the dodgem car is in contact with the barrier for 0.8  s, what force does the 

barrier apply to the car?
(c) What force does the car apply to the barrier?

Impulse from a graph
The force that was determined in sample problem 1.6 was actually the average 
force on the car. In fact, the force acting on the car is not constant. The impulse 
delivered by a changing force is given by:

impulse = Fav∆t.

If a graph of force versus time is plotted, the impulse can be deter mined 
from the area under the graph.

Sample problem 2.2

The graph below describes the changing horizontal force on a 40 kg 
rollerskater as she begins to move from rest. Estimate her speed after 
2.0 seconds.

1.0 1.5 2.00.5
0

B

C

A

100

300

400

Time (s)
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(N
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The magnitude of the impulse on the skater can be determined by calcu lating 
the area under the graph. This can be determined by either counting squares 
or by finding the shaded area.

Magnitude of impulse = area A + area B + area C

 = (
2
1 × 1.1 × 400 + 0.9 × 200 + 

2
1  × 0.9 × 200)  N  s 

 = (220 + 180 + 90)  N  s

 = 490  N  s

Magnitude of impulse = magnitude of change in momentum = m∆v

 ⇒ 490  N  s = 40  kg × ∆v

 ⇒ ∆v = 
490 N s

40 kg

 = 12  m  s−1

 As her initial speed is zero (she started from rest), her speed after  
2.0 seconds is 12  m  s−1.

Revision question 2.2

Estimate the speed of the rollerskater in sample problem 2.2 after 1.0  s.

Momentum and impulse 
When two or more objects collide, the change in the motion of each object 
can be described by Newton’s Second Law of Motion. By expressing Newton’s 

second law in the form Fnet = p
t

∆
∆

, it is possible to examine the effect of col-
lisions on the human body.

When a car collides with an ‘immovable’ object like a large tree, its change 
in momentum is fixed. It is determined by the mass of the car and its initial 
velocity at the instant of impact. The final momentum is zero. Since the 
impulse is equal to the change in momentum, the impulse Fnet ∆t is also fixed. 
By designing the car so that ∆t is as large as possible, the magnitude of the net 
force on the car (and hence its deceleration) can be reduced. The decrease in 
the deceleration of the car makes it safer for the occupants.

Airbags, collapsible steering wheels and padded dashboards are all designed 
to increase the time interval during which the momentum of a human body 
changes during a collision.

The polystyrene liner of bicycle helmets is designed to crush during a col-
lision. This increases the time interval during which the skull accelerates (or 
decelerates) during a collision, decreasing the average net force applied to the 
skull.

Conservation of momentum
Newton’s Second Law of Motion can be applied to the system of two objects 

just as it can be applied to each object. By applying the formula Fnet = 
p
t

∆
∆

 to a 

system of one or more objects, another expression of Newton’s second law can 
be written: if the net force acting on a system is zero, the total momentum of the 
system does not change.

Solution:

Cars are designed to crumple 
in collisions. This increases 
the time interval over which 
the momentum changes. The 
magnitude of the net force on 
the car, and its subsequent 
deceleration, is decreased, 
making it safer for the 
occupants.

Bicycle helmets: Newton’s 
second law provides an 
explanation for their life-saving 
function.
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This statement is an expression of the Law of Conservation of Momentum. It 
is also expressed as: if there are no external forces acting on a system, the total 
momentum of the system remains constant.

A system on which no external forces act is called an isolated system. In 
practice, collisions at the surface of Earth do not take place within isolated 
systems. For example, a system comprising two cars that collide is not isolated 
because forces are applied to the cars by objects outside the system. Road fric-
tion and the gravitational pull of Earth are two examples of external forces on 
this system.

However, if the cars collide on an icy, horizontal road, the collision can be 
considered to take place in an isolated system. The sum of external forces 
(including the force of gravity and the normal reaction force) acting on the 
system of the cars would be negligible compared with the forces that each car 
applies to the other. A system comprising a car and a tree struck by the car could 
not be considered to be an isolated system because Earth exerts a large external 
force on the tree in the opposite direction to that applied to the tree by the car.

Modelling a collision
Consider the system of the two blocks labelled A and B in the figure below. 
The blocks are on a smooth horizontal surface. The system can be treated as 
isolated because the gravitational force and normal reaction force on each 
of the blocks have no effect on their horizontal motion. Because the sur-
face is described as smooth, the frictional force can be assumed to be neg-
ligible. The net force on the system is zero. Therefore, the total momentum 
of the system remains constant. The momentum of the centre of mass of 
the system also remains constant. However, the momentum of each of the 
blocks changes during the collision because each block has a non-zero net 
force acting on it.

The net force on this system of two blocks is zero. Its total momentum therefore 
remains constant.

before the collision

during the collision

after the collision

pA

FA FB

pB

A
B

pA + pB

pAB

A

B

A
B

The force exerted on block A by block B (Fon A by B) during the collision is 
equal in magnitude and opposite in direction to the force exerted on block B 

An isolated system is one on 
which no external forces act. The 
only forces acting on objects in the 
system are those applied by other 
objects in the system.
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by block A (Fon B by A). Therefore the change in momentum of block A (∆pA) is 
equal and opposite to the change in momentum of block B (∆pB). That is:

 Fon A by B = –Fon B by A

⇒ Fon A by B ∆t = –Fon B by A ∆t
where
∆t = time duration of interaction

 ⇒ ∆pA = –∆pB

⇒ ∆pA + ∆pB = 0

This result should be no surprise as, in order for the total momentum of 
the system consisting of the two blocks to be constant, the total change in 
momentum must be zero.

The interaction between blocks A and B can be summarised as follows.
The total momentum of the system remains constant.
The change in momentum of the system is zero.
The momentum of the centre of mass of the system remains constant.
The force that block A exerts on block B is equal and opposite to the force 
that block B exerts on block A.
The change in momentum of block A is equal and opposite to the change in 
momentum of block B.

Sample problem 2.3

A 1500 kg car travelling at 12 m s–1 on an icy road collides with a 1200 kg car 
travelling at the same speed, but in the opposite direction. The cars lock 
together after impact.
(a) What is the momentum of each car before the collision?
(b) What is the total momentum before the collision?
(c) What is the total momentum after the collision?
(d) With what speed is the tangled wreck moving immediately after the 

collision?

m = 1500 kg m = 1200 kg

before collision

12 m s−1 12 m s−1

m = 2700 kg

after collision

v = ?

(e) What is the impulse on the 1200  kg car?
(f) What is the impulse on the 1500  kg car?
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(a) Assign the direction in which the first car is moving as positive.

1500  kg car: m = 1500  kg, v = 12  m  s−1

 p = mv

 = 1500  kg × 12  m  s−1

 = 18  000  kg  m  s−1

1200  kg car: m = 1200  kg, v = –12  m  s−1

 p = mv

 = 1200  kg × –12  m  s−1

 = –14  400  kg  m  s−1

(b) Momentum: pi = 18  000  kg  m  s−1 – 14  400  kg  m  s−1

 = 3600  kg  m  s−1

(c) The description of the road suggests that friction is insignificant. It can be 
assumed that there are no external forces acting on the system.

⇒ pf = pi

 = 3600  kg  m  s–1

(d) The tangled wreck can be considered as a single mass of 2700  kg.

 m = 2700  kg, pf = 3600 kg  m  s−1, v = ?

 pf = mv

⇒ 2700  kg v = 3600  kg  m  s−1

 v =  1.3 m  s–1 in the direction of the initial velocity of the  
first car

(e) The impulse on the 1200  kg car is equal to its change in momentum.

∆p = pf – pi

 = 1200  kg × 1.33  m  s−1 – (–14  400  kg  m  s−1)

 =  1600  kg  m  s−1 + 14  400  kg  m  s−1 (pf expressed to 2 significant 
figures)

 = 16  000  N s in the direction of motion of the tangled wreck.

(f) The impulse on the 1500  kg car is equal to the impulse on the 1200  kg  
car. This can be verified by calculating the change in momentum of the 
1500  kg car.

∆p = pf – pi

 = 1500  kg × 1.33  m  s−1 – (18  000  kg  m  s−1)

 =  2000  kg  m  s−1 – 18  000  kg  m  s−1 (pf expressed to 2 significant 
figures)

 = –16  000  kg  m  s−1

 = 16  000  Ns in the direction opposite that of the 1200  kg car.

Solution:
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Revision question 2.3

A 1000  kg car travelling north at 30  m  s−1 (108  km  h–1) collides with a stationary 
delivery van of mass 2000  kg on an icy road. The two vehicles lock together after 
impact.
(a) What is the velocity of the tangled wreck immediately after the collision?
(b) What is the impulse on the delivery van?
(c) What is the impulse on the speeding car?
(d) After the collision, if — instead of locking together — the delivery van moved 

forward separately at a speed of 12  m  s−1, what velocity would the car have?

AS A MATTER OF FACT

Can you feel the Earth move when you bounce a basketball on the court? 
If the Earth and your basketball were an isolated system, the Earth would 
move! Its change in speed can be calculated by applying the Law of Con-
servation of Momentum.

The mass of the Earth is 6.0 × 1024  kg. If the mass of a basketball is 600  g 
and it strikes the ground with a velocity of 12  m  s−1 downwards, estimate 
the velocity of the Earth after impact.

Work in energy transfers and 
transformations
Energy can be transferred from one object to another as a result of a tempera-
ture difference (heating or cooling), by electromagnetic and nuclear radiation, 
or by the action of a force.

When you serve in a game of tennis, energy is transferred from the tennis 
racquet to the tennis ball. The energy is transferred to the tennis ball by the 
force applied to it by the tennis racquet. Energy can also be transformed from 
one form into another by the action of a force. For example, as a dropped 
tennis ball falls to the ground, gravitational potential energy is transformed 
into kinetic energy. The transformation of the energy possessed by the ball 
from one form into another is caused by the gravitational force acting on the 
tennis ball.

REMEMBER THIS

Kinetic energy is the energy associated with the movement of an object. 
The kinetic energy Ek of an object of mass m and speed v is expressed as:

Ek = 1
2

mv 2.

Strain potential energy, also known as elastic potential energy, is 
energy that can be stored in an object by changing its shape. Com-
pressing, stretching, bending or twisting objects can increase their strain 
potential energy. Strain potential energy can be transformed into other 
forms of energy by allowing the object to resume its natural shape.

Gravitational potential energy is the energy stored in an object as 
a result of its position relative to another object to which it is attracted 
by the force of gravity. The gravitational potential energy of an object 
increases as it moves away from the object to which it is attracted and 
decreases as it moves towards an object to which it is attracted.

Kinetic energy is the energy 
associated with the movement of 
an object. Like all forms of energy, 
kinetic energy is a scalar quantity.

Strain potential energy is the 
energy stored in an object as a 
result of a reversible change in 
shape.

Gravitational potential energy 
is the energy stored in an object 
as a result of its position relative 
to another object to which it is 
attracted by the force of gravity.
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Getting down to work
The amount of energy transferred to or from another object or transformed to 
or from another form by the action of a force is called work.

The work W done when a force F causes a displacement s in the direction of 
the force is defined as:

work =  magnitude of the force  
× displacement in the direction of the force

    W = F × s.

Work is a scalar quantity. The SI unit of work is the joule. One joule of work is 
done when a force of magnitude of 1 newton causes a displacement of 1 metre 
in the same direction of the force.

The work done on an object of mass m by the net force acting on it is given by:

W = Fnet s
  = mas

where
s = the magnitude of the object’s displacement.

But s can be expressed as 
v u

a
( )

2

2 2−
because v 2 = u2 + 2as,

where
a = acceleration
v = final velocity
u = initial velocity.

Thus W = 
ma v u

a
)

2

2 2( −

 = 
1
2

 mv 2 – 
1
2

 mu2

 = ∆Ek.

In other words, the work done on an object by the net force is equal to the 
change in kinetic energy of the object.

If the initial kinetic energy of the object is zero, the work done by the net 
force is equal to the final kinetic energy. If work is done to stop an object, the 
work done is equal to the initial kinetic energy.

Sample problem 2.4

A car of mass 600  kg travelling at 12  m  s−1 collides with a concrete wall and 
comes to a complete stop over a distance of 30  cm. Assume that the frictional 
forces acting on the car are negligible. 
(a) How much work was done by the concrete wall to stop the car?
(b) What was the magnitude of net force acting on the car as it came to a halt?
(a) The net force on the car is equal to the force applied by the wall. The work 

done by the wall, W, is given by:

W = ∆Ek

 = 
1
2

mv 2

 = 1
2

× 600  kg × (12  m  s−1)2

 = 4.32 × 104  J

 The work done by the wall was 4.3 × 104  J.

Work is the energy transferred 
to or from another object by the 
action of a force. Work is a scalar 
quantity.
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(b) The magnitude is determined by:

 W = Fav s

4.32 × 104  J = Fnet × 0.30  m (Fav = Fnet in this case)

 Fnet = 1.44 × 105  N

 The magnitude of net force was 1.4 × 105  N.

Revision question 2.4

A car travelling at 15  m  s−1 brakes heavily before colliding with another vehicle. 
The total mass of the car is 800  kg. The car skids for a distance of 20  m before 
making contact with the other vehicle at a speed of 5  m  s−1.
(a) How much work is done on the car by road friction during braking?
(b) Calculate the average road friction during braking.

The amount of work done by a changing force is given by:

W = Fav s

where
Fav = the average force.

It can be determined by calculating the area under a graph of force versus 
 displacement in the direction of the force.

Gravitational potential energy
When you drop an object, the gravitational force does work on it, transforming 
gravitational potential energy to kinetic energy as it falls. When you lift an 
object, you do work on the object to increase its gravitational potential energy. 
(Energy is transferred from your body to the object.)

A quantitative definition of gravitational potential energy can be stated by 
determining how much work is done in lifting an object of mass m through a 
height ∆h. In order to lift an object without changing its kinetic energy, a force 
F equal to the weight of the object is needed. The work done is:

     W = F s

       = mg∆h

⇒ ∆Eg = mg∆h
where
∆Eg = change in gravitational potential energy.

This formula provides a way of calculating changes in gravitational potential 
energy. If the gravitational potential energy of an object is defined to be 
a zero at a reference height, a formula for the quantity of gravitational 
potential energy can be found for an object at height h above the reference 
height.

   ∆Eg = mg∆h

⇒ Eg – 0 = mg (h – 0)

      ⇒ Eg = mgh

Usually the reference height is ground or floor level. Sometimes it might be 
more convenient to choose another reference height. However, it is the change 
in gravitational potential energy that is most important in investigating energy 
transformations.
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It is important to remember that the change in gravitational potential energy 
as a result of a particular change in height is independent of the path taken. 
The change in gravitational potential energy of the diver in the next figure is 
the same whether she falls from rest, jumps upwards first or completes a com-
plicated dive with twists and somersaults.

∆h ∆h

The change in gravitational potential energy of the diver is independent of the 
path taken.

Because a change in gravitational potential energy is equal to the work done 
on an object by, or against, the gravitational force, it can be found by calcu-
lating the area under a graph of force versus height.

REMEMBER THIS

The quantity g is known as the gravitational field strength (sometimes just 
referred to as gravitational field). 

The change in gravitational potential energy of an object can also be 
determined by calculating the area under a graph of gravitational field 
strength versus height (equal to gΔh) and multiplied by its mass.
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Sample problem 2.5

A water slide has a drop of 9.0  m. A child of mass 35  kg sits at the top. 
(a) What is the child’s gravitational potential energy?
(b) How fast will the child be travelling when they hit the water? Ignore any 

frictional losses.

(a) ΔEg = mgΔh

 = 35  kg × 9.8  m  s–2 × 9.0  m

 = 3100  J

(b) ∆mv mg h
1
2

=2 , so = ∆v g h22 .

 
v 2 9.8 m s 9.0 m2= × ×−

 = 13  m  s–1

Revision question 2.5

The maximum height of a roller coaster ride is 30  m above the ground. The 
lowest height of the ride is 5.0  m.
(a) What is the change in gravitational potential energy of a 60  kg passenger?
(b) If the passenger was travelling at 0.5  m  s–1 at the top, what would be their 

maximum speed at the lowest point?

Strain potential energy and springs
The energy stored in an object by changing its length or shape is usually called 
strain potential energy if the object can return naturally to its original shape. 
Work must be done on an object by a force in order to store energy as strain 
potential energy. However, when objects are compressed, stretched, bent or 
twisted, the force needed to change their shape is not constant. For example, 
the more you stretch a rubber band, the harder it is to stretch it further. The 
more you compress the sole of a running shoe, the harder it is to compress it 
further.

The strain potential energy of an object can be determined by calculating 
the amount of work done on it by the force. The work can also be determined 
by calculating the area under a graph of force versus displacement. In the case 
of a simple spring, rubber band or running shoe, the gain in strain potential 
energy can be calculated by determining the area under a graph of force versus 
extension or force versus compression.

When an object loses strain potential energy, it can do work on other 
objects. The amount of work done by the object (and hence the change 
in potential energy) is equal to the area under a graph of force versus 
compression.

When you close the lid of a jack-in-the-box, you do work on the spring to 
increase its strain potential energy, transferring energy from your body to the 
spring. The spring does work on the ‘jack’ when the lid is opened, transforming 
strain potential energy into kinetic energy. 

Sample problem 2.6

The graph on page 59 shows how the force required to compress a jack-in-
the-box spring changes as the compression of the spring increases.

Solution:

A jack-in-the-box. When 
the lid opens, the spring 
does work on the ‘jack’, 
transforming strain potential 
energy into kinetic energy.
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How much energy is stored in the spring when it is compressed by 25  cm?

Compression (cm)
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The energy stored in the spring is equal to the amount of work done on it.

W = area under graph
 = area A + area B + area C

 = ( 1
2

 × 0.15  m × 15  N) + (0.10  m × 15  N) + (1
2

 × 0.10  m × 5.0  N)

 = 1.125  J + 1.5  J + 0.25  J
 = 2.9  J

Revision question 2.6

If the length of the spring represented by the graph above is 35  cm:
(a) how much strain potential energy is stored in it when its length is 15  cm?
(b) what is the length of the spring when 0.50  J of strain potential energy is 

stored in it due to compression? (This question is a little harder.)

Hooke’s Law springs to mind
Robert Hooke (1635 –1703) investigated the behaviour of elastic springs and 
found that the restoring force exerted by the spring was directly proportional 
to its displacement. The force is called a restoring force because it acts in a 
direction that would restore the spring to its natural length.

In vector notation, Hooke’s Law states:
F = −kΔx

where
F = restoring force
Δx = displacement of the end of the spring from its natural position
k = spring constant (also known as force constant).
The negative sign is necessary because the restoring force is always in the 
opposite direction to the displacement.

It is usually more convenient to express Hooke’s Law in terms of magnitude 
so that the negative sign is not necessary. That is:

F = kΔx

where
F = magnitude of the restoring force
Δx = compression or extension of the spring
k = spring constant.

Solution:

The restoring force applied by 
a spring is the force it applies to 
resist compression or extension.

Unit 3 Hooke’s Law
Summary screen 
and practice 
questions

AOS 3

Topic 2

Concept 5



UNIT 3 60

Some important points to remember about Hooke’s Law are listed below.
Hooke’s Law applies to springs within certain limits. If a spring is compressed 
or extended so much that it is permanently deformed — unable to return to 
its original natural length — Hooke’s Law no longer applies. 
The magnitude of the restoring force is equal to the force that is compressing 
or extending the spring (Newton’s third law).
The measure Δx is not the length of the spring. Rather, it is a measure of its 
compression or extension — the change in length of the spring.
The spring constant has SI units of N  m−1.
A graph of F versus Δx produces a straight line with a gradient of k.
The strain potential energy of a spring that obeys Hooke’s Law can be 

expressed as:

strain potential energy = 
1
2

k(Δx)2.

This can be verified by calculating the work done in extending the spring 
described in the figure at left. This is done by calculating the area under the 
graph of force versus extension.

Strain potential energy = work done on spring

 = area under graph

 = 
1
2

 × Δx × kΔx

 = 1
2

k(Δx )2

Sample problem 2.7

The graph below left describes the behaviour of two springs that obey Hooke’s 
Law. Both springs are extended by 20  cm.
(a) What is the spring constant of spring A?
(b) Which spring has the greatest spring constant?
(c) What is the strain potential energy of spring B?
(a) The spring constant k is equal to the gradient of the graph.

⇒ k = 
40 N

0.20 m

 = 200  N  m−1

(b) The gradient of the graph for spring A is greater than that for spring B. 
Therefore, spring A has a greater spring constant than spring B — in fact, it 
is twice as great.

(c) Since the spring obeys Hooke’s Law, the strain potential energy of spring B 
can be calculated using the formula:

strain potential energy = 1
2

k(Δx)2

 k = gradient

 = 
20 N

0.20 m

 = 100  N  m−1

strain potential energy = 1
2

 × 100  N  m−1 × (0.20  m)2

 = 2.0 J.

Extension
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F  =  kΔx

The strain potential energy of 
a spring is equal to the area 
under the graph. If the spring 
obeys Hooke’s Law, strain 

potential energy = 1
2

 k(Δx)2.
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Revision question 2.7

(a) What is the spring constant of spring B, described in sample problem 2.4?
(b) How much strain potential energy is stored in spring A when it is extended 

by 20  cm?

Sample problem 2.8

A toy car of mass 0.50  kg is pushed against a spring so that it is compressed by 
0.10  m. The spring obeys Hooke’s Law and has a spring constant of 50  N  m–1. 
When the toy car is released, what will its speed be at the instant that the spring 
returns to its natural length? Assume that there is no friction within the spring 
and no frictional force resisting the motion of the toy car.

The strain potential energy stored in the spring equals 
1
2

k(Δx)2.

strain potential energy gained = 1
2

k(Δx)2

 = 
1
2

 × 50  N  m−1 × (0.10  m)2

 = 0.25  J

 ⇒ 
1
2

mv 2 = 0.25  J

 1
2

 × 0.50  kg × v 2 = 0.25  J

 v 2 = 
0.25 J

1
2

0.50 kg×

 v = 1.0  m  s−1

The speed of the toy car is 1.0  m  s−1.

Revision question 2.8

A model car of mass 0.40  kg travels along a frictionless horizontal surface at a 
speed of 0.80  m  s–1. It collides with the free end of a spring that obeys Hooke’s 
Law. The spring constant is 100  N  m–1.
(a) How much strain potential energy is stored in the spring when the car 

comes to a stop?
(b) What is the maximum compression of the spring?

Elastic and inelastic collisions
When two objects collide, the total energy of the system, which includes the 
two objects and the surroundings (the air and ground), is conserved. However, 
the total energy of the two objects is not conserved, because when they make 
contact some of their energy is transferred to the surroundings.

Energy cannot be created or destroyed. It can only be converted from one 
form into another. This is the Law of Conservation of Energy. During most 
energy transformations, some energy is degraded into less useful forms, 
heating the surroundings and causing noise. If air resistance and other types 
of friction are small, the amount of energy degraded can be considered 
negligible.

Solution:

Digital doc
Investigation 2.2 
The properties of a coil spring
doc-18536
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A tale of two collisions
The Law of Conservation of Momentum states: when a collision between two 
objects occurs, the total momentum of the two objects remains constant.

This statement is valid as long as the two objects comprise an isolated system; 
that is, as long as there are no external forces acting on each of the objects.

4 8

before

after

before

after

84

Two collisions — momentum is conserved in both of them.

Consider the differences between the two collisions shown in the diagram 
above: a collision between two billiard balls on a smooth, level billiard table, 
and a head-on collision between two cars travelling in opposite directions on 
a level, icy road.

The two billiard balls can be considered to be an isolated system. The total 
momentum of the two billiard balls immediately after the collision is the same 
as it was immediately before the collision. (It is also the same during the col-
lision. Momentum, unlike energy, cannot be stored.) The two cars can also be 
considered to be an isolated system, because the frictional forces on the cars 
are relatively small. Therefore, the total momentum of the cars immediately 
after the collision is the same as it was immediately before the collision.

What’s the difference?
Apart from the difference between the masses of the objects involved in the 
collisions, there is one obvious difference.

The collision between the two billiard balls is an almost perfect elastic 
collision. An elastic collision is one in which the total kinetic energy after 
the collision is the same as it was before the collision. The sound made 
when the balls collide provides evidence that the collision is not quite 
perfectly elastic. Some of the initial kinetic energy of the system is trans-
ferred to particles in the surrounding air (and within the balls themselves). 
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However, when making predictions about the outcome of such a collision, 
it would be quite reasonable to treat the collision as a perfectly elastic one. 
In fact, a perfectly elastic ‘collision’ can only take place if the interacting 
objects do not actually make contact with each other. A perfectly elastic 
interaction can take place when two electrons move towards each other in 
a vacuum.
The collision between the two cars is an inelastic collision. Even though 
momentum is conserved, the total kinetic energy of the cars after the collision 
is considerably less than it was before the collision. A significant proportion 
of the initial kinetic energy of the system is transferred to the bodies of both 
cars, changing their shapes and heating them. Some of the initial kinetic 
energy is also transformed to sound energy.

Energy transformations in collisions
Whether or not a collision is elastic depends on what happens to the colliding 
objects during the collision. When two objects collide, each of the objects is 
deformed. Each object applies a force on the other (in fact, the forces are equal 
and opposite!). The size of the applied force increases as the deformation 
increases (just like a compressed spring). If each object behaves elastically, all 
of the energy stored as strain potential energy during deformation is returned 
to the other object as kinetic energy. The collision is therefore elastic.

In the collision between the two billiard balls discussed above, the work 
done on each billiard ball as it returns to its original shape is almost as much as 
the work done during deformation. Therefore, almost all of the strain potential 
energy stored in each ball while they are in contact with each other is returned 
as kinetic energy.

The graph (below left) shows that in an elastic collision the work done 
on an object during deformation (the area under the force versus defor-
mation graph) is equal to the work the object does on the other object as it 
returns to its original straight. The graph (below right) illustrates a collision 
between an electron and second electron. The work done to slow down the 
approaching electron is the same as the work done to increase its speed 
during separation.

A graph of force versus 
deformation for an object 
involved in an elastic collision
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The graph on page 64 illustrates that even though the total kinetic energy 
and total strain potential energy change during an elastic collision, the sum of 
the kinetic energy and strain potential energy is constant. In an inelastic col-
lision the sum of the kinetic energy and strain potential energy decreases 
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because energy is lost from the system of objects as heat, permanent deforma-
tion of the objects and sound.

Energy transformations during an elastic collision
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PHYSICS IN FOCUS

Crumple zones
The crumple zones at the front and rear of cars are designed to reduce 
injuries by ensuring that the collisions are not elastic. Between the 
crumple zones is the more rigid passenger ‘cell’, designed to protect occu-
pants from the intrusion of the engine or other solid objects that would 
injure or even kill them.

Crumple zones at the front and rear of cars absorb energy and reduce the 
magnitude of acceleration during an accident.

In the previous section on momentum, an analysis using Newton’s 
Second Law of Motion reveals that the acceleration of the occupants 
is decreased because the time during which the velocity changes is 
increased if the car is designed to crumple.

Digital doc
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The reason that crumple zones work can be also understood by analysing 
a collision in terms of energy transformations. When a car collides with a 
rigid object, the object does work on the car, transforming its kinetic energy 
into other forms of energy and transferring some of this energy to the sur-
roundings. A lot of the kinetic energy of the car is used to heat the body of 
the car and the surrounding air. Without the crumple zone, the distance 
over which the force acts would be less and the cars would be more inclined 
to rebound. The result would be a greater acceler ation (in magnitude) of 
occupants, and therefore a greater chance of serious injury or death.

The effectiveness of gloves in baseball and cricket can also be analysed 
in terms of energy. Like the crumple zones of cars, they are designed to 
ensure that collisions are inelastic.

Sample problem 2.9

A white car of mass 800 kg is driven along a slippery straight road with a speed 
of 20  m  s−1 (72  km  h−1). It collides with a stationary blue car of mass 700  kg. 
During the collision the blue car is pushed forwards with a speed of 12  m  s−1. 
(a) What is the speed of the white car after the collision? 
(b) Show that the collision is not elastic.

(a) Assign the direction in which the white car is moving as positive. Assume 
that friction in this case is negligible. Therefore momentum is conserved.

The initial momentum of the system, pi, is given by:

pwhite + pblue = 800  kg × 20  m  s−1 + 0  kg  m  s−1

 = 16  000  kg  m  s−1. 

The final momentum of the system, pf, is given by:

pwhite + pblue = 800  kg × vwhite + 700  kg × 12  m  s−1

 = 800  kg × vwhite + 8400  kg  m  s−1

where
vwhite = velocity of the white car after the collision.

But since pf = pi:

800  kg × vwhite + 8400  kg  m  s−1 = 16  000  kg  m  s−1

 ⇒ 800  kg × vwhite = 7600  kg  m  s−1

 ⇒ vwhite = 9.5  m  s−1

 The speed of the white car after the collision is 9.5  m  s−1.

(b) If the collision is elastic, the total kinetic energy after the collision will be 
the same as the total kinetic energy before the collision. 

 Total kinetic energy before the collision is given by: 
1
2

 × 800  kg × (20  m  s−1)2 + 0 = 160  000  J.

 Total kinetic energy after the collision is given by:

1
2

 × 800  kg × (9.5  m  s−1)2 + 
1
2

 × 700  kg × (12  m  s−1)2 = 86  500  J.

 Kinetic energy is not conserved. The collision is not elastic.

Solution:
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Revision question 2.9

(a) A green dodgem car of mass 400  kg has a head-on collision with a red 
dodgem car of mass 300  kg. Both dodgem cars were travelling at a speed 
of 2.0  m  s–1 before the collision. What is the rebound speed of the green 
dodgem car if the red dodgem car rebounds at a speed of:
  (i) 1.0  m  s–1

(ii) 2.0  m  s–1?
(b) Are either of the collisions in part (a) elastic? If so, which one?

AS A MATTER OF FACT

Most deaths and injuries in car crashes are caused by collisions between 
occupants and the interior of the car. Driver airbags are designed to 
reduce the injuries caused by impact with the steering wheel. They 
should inflate only in head-on collisions.

Testing airbags

Airbags inflate when the crash sensors in the car detect a large decelera-
tion. When the sensors are activated, an electric current is used to ignite a 
chemical called sodium azide (NaN3). The sodium azide stored in a metal 
container at the opening of the airbag burns rapidly, producing sodium 
compounds and nitrogen gas. The reaction is explosive, causing a noise 
like the sound of gunfire. The nitrogen gas inflates the airbag to a volume 
of about 45  L in only 30  ms. When the driver’s head makes contact with 
the airbag, the airbag deflates as the nitrogen gas escapes through vents 
in the bag. The dust produced when an airbag is activated is a mixture of 
the talcum powder used to lubricate the bags and the sodium compounds 
produced by the chemical reaction. Deflation must be rapid enough to 
allow the driver to see ahead after the accident. The collision of the driver 
with the airbag is inelastic. Most of the kinetic energy of the driver’s body 
is transferred to the nitrogen gas as the kinetic energy of its molecules.
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Chapter review
Unit 3 Work and energy

Momentum and 
collisions

Sit Topic test
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Summary
 ■ Impulse is the product of a force and the time interval 

over which it acts. Impulse is a vector quantity with 
SI units of N s.

 ■ The change in momentum of an object is equal to the 
impulse of the net force acting on it.

 ■ The impulse delivered to an object by a force can 
be determined from the area under the graph of the 
force versus time.

 ■ If there are no external forces acting on a system, the 
total momentum of the system remains constant. 
This statement is an expression of the Law of Conser-
vation of Momentum. 

 ■ The Law of Conservation of Momentum can be 
applied to collisions between two objects moving 
along a straight line, as long as external forces such 
as friction are negligible. 

 ■ When two objects collide, the impulse applied to the 
first object by the second object is equal and oppo-
site in direction to the impulse applied to the second 
object by the first object.

 ■ The amount of energy transferred to or from another 
object, or transformed to or from another form, by 
the action of a force is called work.

 ■ The work done on an object by the net force is equal 
to the object’s change in kinetic energy.

 ■ A change in gravitational potential energy is equal to 
the work done by or against a gravitational force and 
is equal to mgΔh. It can also be determined by calcu-
lating the area under a graph of force versus height.

 ■ The work done when a force causes a displacement 
along the line of action of the force is equal to the product  
of the magnitude of the force and the displacement.

 ■ Strain potential energy is the energy stored in an 
object as a result of a reversible change in shape.

 ■ When an elastic spring is compressed or extended, 
the spring applies a restoring force in a direction 
that would restore the spring to its natural length. 
The restoring force F is related to the displacement 
of the spring from its natural length by the equation 
F = −kΔx, where k is the spring constant and Δx is the 
displacement from the spring’s natural length. This 
equation is an expression of Hooke’s Law. The strain 
potential energy stored in a spring that obeys Hooke’s 

 Law is equal to 
1
2

 k(Δx)2.
 ■ The Law of Conservation of Energy applies to col- 

lisions as it applies to all interactions between objects. 
However, the total energy of the objects that collide is 
not conserved, because when the objects make contact 
some of their energy is transferred to the surroundings. 

 ■ Collisions in which the total kinetic energy of the objects 
is conserved are called elastic collisions. In elastic colli-
sions, the work done on each object during deformation 
is the same as the work done as each object resumes its 
original shape. Collisions in which the total energy is 
not conserved are called inelastic collisions.

 ■ Momentum is conserved in both elastic and inelastic 
collisions as long as the external forces are negligible.

 ■ Many safety features of motor vehicles are designed 
to reduce injuries by ensuring that collisions between 
vehicles, or between vehicles and other objects, are 
not elastic.

Questions
In answering the questions on the following pages, 
assume, where relevant, that the magnitude of the 
gravitational field at Earth’s surface is 10  N  kg−1.

Momentum and impulse
 1. Describe the relationship between impulse and 

momentum in eight words or fewer.
 2. Regarding momentum, what is the fundamental 

purpose of airbags, collapsible steering wheels and 
padded dashboards in passenger vehicles?

 3. Can an object have energy but no momentum? 
Explain. Can an object have momentum, but no 
energy?

Conservation of momentum
 4. In a real collision between two cars on a bitumen 

road on a dry day, is it reasonable to assume that 
the total momentum of the two cars is conserved? 
Explain your answer.

 5. An empty railway cart of mass 500  kg is moving along 
a horizontal low-friction track at a velocity of 3.0  m  s−1 
due south when a 250  kg load of coal is dropped into it 
from a stationary container directly above it.
(a) Calculate the velocity of the railway cart 

immediately after the load has been emptied 
into it.

(b) What happens to the vertical momentum of the 
falling coal as it lands in the railway cart?

(c) If the fully loaded railway cart is travelling along 
the track at the velocity calculated in (a) and the 
entire load of coal falls out through a large hole 
in its floor, what is the final velocity of the cart?

 6. Two iceskaters, Melita and Dean, are performing 
an ice dancing routine in which Dean (with a mass 
of 70  kg) glides smoothly at a velocity of 2.0  m s−1 
due east towards a stationary Melita (with a mass of 
50  kg), holds her around the waist and they both 
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  move off together. During the whole move, no 
significant frictional force is applied by the ice.
(a) What is Dean’s momentum before making 

contact with Melita?
(b) Where is the centre of mass of the system 

comprising Dean and Melita 3.0 s before impact?
(c) What is the velocity of the centre of mass of 

the system before impact?
(d) Calculate the common velocity of Melita and 

Dean immediately after impact.
(e) What impulse is applied to Melita during the 

collision?
 7. A car of mass 1500  kg travelling due west at a speed of 

20  m  s−1 on an icy road collides with a truck of mass 
2000  kg travelling at the same speed in the opposite 
direction. The vehicles lock together after impact.
(a) What is the velocity of the tangled wreck 

immediately after the collision?
(b) Use your answer to part (a) to determine what 

impulse is applied to the truck during the 
collision.

(c) Which vehicle experiences the greatest (in 
magnitude) change in velocity?

(d) Which vehicle experiences the greatest change 
in momentum?

(e) Which vehicle experiences the greatest force?
 8. Are you generally safer in a big car or a small car in 

the event of an accident? If so, what is the reason? By 
considering the questions below you might be able to 
work it out by making some estimates and applying 
Newton’s laws to each car. You might also have to 
make some assumptions in predicting the outcomes 
of such a collision. Consider the following questions.

 ■  How do the forces on each car compare?
 ■  How do the masses of the cars compare with 
each other?

 ■  What is the subsequent change in velocity of 
each car as a result of the collision?

 ■  How does your body move during a collision 
and what does it collide with?

Work in energy transfers and transformations
 9. A 900  kg car travelling at 20  m  s−1 on an icy road 

collides with a stationary truck. The car comes to 
rest over a distance of 40  cm. 
(a) What is the initial kinetic energy of the car?
(b) How much work is done by the truck to stop 

the car?
(c) What average force does the car apply to the 

truck during the collision?
 10. A rock is dropped from a height into mud and 

penetrates. If it was dropped from twice the 
height, what would be the depth of penetration 
compared to the depth from the first drop?

 11. A car travelling at 60  km  h−1 collides with a large 
tree. The front crumple zone folds, allowing the 

car to come to a complete stop over a distance 
of 70  cm. The driver, of mass 70  kg, is wearing a 
properly fitted seatbelt. As a result, the driver’s 
body comes to rest over the same distance as the 
whole car.
(a) Determine the amount of work done by the 

seatbelt in stopping the driver.
(b) What is the magnitude of the average force 

applied to the driver by the seatbelt?
(c) Estimate the magnitude of the force that 

would be exerted by the front interior of the 
car on an unrestrained driver in the same 
accident. Assume that the driver does not 
crash through the windscreen.

Gravitational potential energy
 12. Calculate the gravitational potential energy of the 

following objects.
(a) A 70  kg pole vaulter 6.0 metres above the 

ground
(b) A pile driver of mass 80  kg raised 7.0  m above 

the pile
(c) A 400  kg lift at the bottom of an 80  m mine 

shaft relative to the ground
 13. Estimate the gravitational potential energy of the 

following objects.
(a) The roller coaster in the opening image of 

chapter 1 when it is at the top of the loop, with 
reference to the bottom of the loop

(b) The high jumper in the section on projectile 
motion in chapter 1 with reference to the ground

(c) This textbook with reference to the floor
(d) A tennis ball about to be hit during a serve 

with reference to the ground
(e) A 20-storey building with reference to the ground

Strain potential energy and springs
 14. The graph below describes the behaviour of three 

springs as known weights are suspended from  
one end.
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(a) What is the force applied by spring A to a 
1.0  kg mass suspended from one end?

(b) What is the spring constant of spring B?
(c) Which spring has the greatest stiffness?
(d) How much work is done by a 500  g mass on 

spring C to extend it fully?
(e) Which spring has the greatest strain energy at 

maximum extension?
 15. The ancient Egyptians relied on knowledge of the 

physics of energy transformations to build the 
Great Pyramids at Giza. They used ramps to push 
limestone blocks with an average mass of 2300  kg 
to heights of almost 150  m. The ramps were 
sloped at about 10° to the horizontal. Friction was 
reduced by pumping water onto the ramps.
(a) How much work would have to be done to lift 

an average limestone block vertically through 
a height of 150  m?

(b) How much work would have been done to 
push an average limestone block to the same 
height along a ramp inclined at 10° to the 
horizontal? Unfortunately, you will have to 
assume that friction is negligible.

 16. A weightlifter raises a barbell of mass 150  kg 
vertically through a height of 1.2  m.
(a) Sketch a graph of gravitational field strength 

versus height of the barbell.
(b) Use the graph to determine the change in 

gravitational potential energy of the barbell.
(c) How much work did the weightlifter do on the 

barbell?
 17. A crane drops a 1600  kg car from a height of 8.0  m 

onto the ground. At the same time, a cricket ball of 
mass 160  g is dropped from the same height. What 
is the value of the ratio:

(a) 
initial gravitational potential energy of car

initial gravitational potential energy of cricket ball

(b) 
landing kinetic energy of car

landing kinetic energy of cricket ball

(c) 
landing speed of car

landing speed of cricket ball

 18. Angela rides a toboggan down a slope inclined 
at 30° to the horizontal. She starts from rest and 
rides a distance of 25  m down the slope. Angela 
and her toboggan have a combined mass of 60  kg.
(a) How much work is done on Angela by the 

force of gravity?
(b) If friction is negligible, what would her speed 

be at the end of her ride?
(c) How much work is done on Angela by the 

normal reaction?
(d) In reality, the frictional force on Angela is 

not negligible. Her speed at the end of her 
ride is measured to be 7.2  m  s–1. What is the 
magnitude of the frictional force?

 19. The graph in figure (a) below shows how the 
restoring force of a spring changes as it is 
compressed. A 2.5  kg mass is pushed against 
the spring so that its length is 5.0  cm and 
then released. Friction can be assumed to be 
negligible.
(a) How much energy is stored in the spring?
(b) What will be the speed of the mass when 

the spring returns to its original length of 
20  cm?

(c) What is the spring constant of the spring?
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 20. The following graph shows how the force applied 
by the rubber bumper at the front of a 450  kg 
dodgem car changes as it is compressed during 
factory testing.
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(a) If the dodgem car collides head on with a 
solid wall at a speed of 2.0  m  s−1, what will be 
the maximum compression of the front rubber 
bumper?

(b) How much work is done on the dodgem car 
by the rubber bumper as it is compressed?

(c) If the rubber bumper obeys Hooke’s Law, with 
what speed will the dodgem car rebound from 
the wall?

Elastic and inelastic collisions
 21. Three springs, each obeying Hooke’s Law, are 

hidden in a container without a lid. Weights are 
added to the arrangement of springs and a graph 
of applied weight versus compression is drawn. 
The resulting graph is shown below.
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(a) Describe how the three springs are arranged.
(b) Determine the spring constant of the longest 

spring.
(c) What is the spring constant of the shortest 

spring?
 22. Consider a tennis ball that has been dropped 

vertically onto a hard surface.
(a) Is the collision of the falling tennis ball with 

the ground elastic?
(b) How do you know?
(c) Is momentum conserved during this collision?

 23. Consider a collision between two cars on an icy 
intersection where road friction is insignificant. 
Assume that the cars bounce off each other.
(a) How do you know without performing any 

calculations that the collision is not elastic?
(b) Is momentum conserved in such a collision?

 24. Two cars of equal mass and travelling in opposite 
directions on a wet and slippery road collide and 
lock together after impact. Neither car brakes 
before the collision. The tangled wreck moves off 
in an easterly direction at 5.0  m  s−1 immediately 

after the collision. If one car was travelling due 
west at 20  m  s−1 immediately before the collision:
(a) what was the velocity of the other car?
(b) what fraction of the initial kinetic energy was 

‘conserved’ during the collision?
 25. Two cars of equal mass and travelling in opposite 

directions with equal speeds on a wet and slippery 
road collide head on.
(a) If the vehicles lock together on impact, what 

is the speed of the tangled wreck after the 
collision?

(b) If both vehicles were fitted with rubber 
bumpers so that the collision was perfectly 
elastic, what would be the final speed of each 
vehicle if their initial speed was 60  km  h−1?

 26. A 60  kg bungee-jumper falls from a bridge 50  m 
above a deep river. The length of the bungee cord 
when it is not under tension is 30  m. Calculate:
(a) the kinetic energy of the bungee-jumper at the 

instant that the cord begins to stretch beyond 
its natural length

(b) the strain energy of the bungee cord at the 
instant that the tip of the jumper’s head 
touches the water. (Her head just makes 
contact with the water before she is pulled 
upward by the cord.) The height of the 
bungee-jumper is 170  cm.

 27. A white billiard ball of mass 200  g moving with a 
velocity of 2.0  m  s−1 due north strikes a stationary 
red billiard ball of the same mass. The red billiard 
ball moves off with a velocity of 1.7  m  s−1 due 
north.
(a) What is the final velocity of the white billiard 

ball?
(b) What percentage of the initial kinetic energy is 

returned to the system of the two billiard balls 
after the collision?

(c) A billiard player claims that he can make the 
same stationary red ball move off with a speed 
of 2.5  m  s−1 when the same white ball strikes 
it with a speed of 2.0  m  s−1. When challenged, 
he responded that according to the Law of 
Conservation of Momentum, the white ball 
would rebound with a speed of 0.5  m  s−1.

 (i)  Show that the player’s claim is consistent 
with the Law of Conservation of 
Momentum.

 (ii)  Explain, using calculations, why the 
player’s claim is not correct — even 
though it is consistent with the Law of 
Conservation of Momentum.

 28. In an elastic collision between two objects of 
mass m1 and m2, show that the speed of approach 
(u2 − u1) is equal to the speed of separation 
(v2 + v1). The symbols u1, u2, v1 and v2 each 
represent speeds, not velocities.
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u1 u2

before m1 m2

v1 v2

after m1 m2

Impulse and momentum
 29. A 200  g billiard ball strikes the side of the table  at 

right angles to its edge at a speed of 1.5  m  s−1 and 
rebounds in the opposite direc tion with a speed 
of 1.2  m  s−1. The billiard ball is in contact with the 
table for 0.10  s. Assume that the frictional force on 
the ball is negligible.
(a) What is the net force applied to the bil liard ball?
(b) What is the impulse on the billiard ball?
(c) According to Newton’s Third Law of Motion, 

the billiard ball applies a force on the edge of 
the table equal and opposite to the force that 
the edge of the table applies to the billiard ball. 
Does the table move? Explain your answer.

 30. When a bullet is fired from a rigidly held rifle, the 
force exerted by the rifle on the bullet is equal and 
opposite to the force exerted by the bullet on the rifle.
(a) Explain why the bullet accelerates while the 

rigidly held rifle does not.
(b) In most cases when a rifle is fired, the 

shooter’s shoulder moves back as the rifle 
recoils. If a 4.0  kg rifle fires a 20  g bullet with 
an initial speed of 300  m  s−1, what is the initial 
recoil speed of the rifle?

 31. The graph below shows how the net force on an 
object of mass 2.5  kg changes with time.
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(a) Calculate the change in momentum of the 
object during the first 6.0  s.

(b) If the object was initially at rest, what is its 
momentum after 12  s?

(c) Draw a graph of velocity versus time for the 
object, assuming that it was initially at rest.

 32. Use the ideas presented in this chapter to explain 
why:
(a) the dashboards of cars are padded
(b) cars are deliberately designed to crumple at 

the front and rear
(c) the compulsory wearing of bicycle helmets 

has dramatically reduced the number of 
serious head injuries in bicycle accidents.

A single answer (rather than three separate 
answers) is acceptable.

 33. A car travelling at 50  km  h−1 (14  m  s−1) collides 
with a concrete wall. The front crumple zone 
of the car folds, allowing the car to come to a 
complete halt over a distance of 50  cm. The driver 
is wearing a properly fitted seatbelt, but the front 
seat passenger is unrestrained. The head of the 
front seat passenger strikes the dashboard and 
stops over a distance of 2.5  cm. The restrained 
driver comes to rest over the same time and 
distance as the whole car. The driver and front seat 
passenger each have a mass of 70  kg.
(a) Calculate: 
 (i) the impulse on the driver
 (ii) the impulse on the front seat p assenger
 (iii)  the average acceleration of the driver 

during the car’s impact with the con crete 
wall

 (iv)  the average acceleration of the passenger’s 
head during its impact with the 
dashboard.

(b) Express your answers to (iii) and (iv) in 
the number of g s to which each person is 
subjected. The number of g s is the mul tiple of 
the magnitude of acceleration due to gravity to 
which an object is exposed.

(c) Write a paragraph explaining how seat belts 
reduce the likelihood of death or serious 
injury in the event of a front-end collision.
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Before beginning this chapter, you should 
be able to:

 ■ calculate average speed using v
d
t

=

 ■ convert between different units of speed 
and velocity

 ■ use Newton’s laws of motion to analyse 
movement

 ■ use the concept of half-life to describe 
decay rates of particles

 ■ understand that fusion of hydrogen is the 
source of the Sun’s energy

 ■ calculate kinetic energy using E mv
1
2

.2=

KEY IDEAS

After completing this chapter, you should 
be able to:

 ■ recognise that velocity, time, distance, 
mass and energy are relative and depend 
on the reference frame of the observer

 ■ understand what is meant by frame of 
reference and inertial frame of reference

 ■ define the principle of relativity as the 
condition that the laws of physics are the 
same in all inertial reference frames

 ■ understand that special relativity 
established the speed of light as an 
invariant quantity

 ■ describe Maxwell’s observation that 
the speed of electromagnetic waves 
depends only on the electrical and 
magnetic properties of the medium they 
pass through

 ■ describe Einstein’s two postulates for the 
Special Theory of Relativity

 ■ recognise and describe proper time and 
proper length

 ■ calculate time dilation and length 
contraction for moving reference frames

 ■ explain how muons can reach the surface 
of the Earth despite their short half-lives

 ■ discuss the equivalence of mass and 
energy through the equation E = mc2

 ■ calculate relativistic kinetic energies
 ■ explain the relationship between the 
Sun’s energy output and its mass loss.

CHAPTER

3 Special relativity

The velocity of a yacht can be measured relative to wind, land, water 
or other yachts, and all of these measurements can be different.



73CHAPTER 3 Special relativity

What is relativity?
The speed of an object depends on the relative motion of the observer. So 
do the object’s time, kinetic energy, length and mass; that is, these properties 
are relative rather than fixed. Albert Einstein discovered that some of the 
physical properties that people assumed to be fixed for all observers actually 
depend on the observers’ motions. But not everything is relative. The laws of 
physics and the speed of light are the same for all observers. Major develop-
ments in physics have come about at times when physicists such as Galileo 
and Einstein developed a clearer understanding of what is relative and what 
is not.

Albert Einstein (1879–1955) is one of the most famous figures in his-
tory, largely due to his work on relativity. Einstein did not invent the idea of 
relativity  — it dates back to Galileo — but he brought it into line with nine-
teenth-century developments in the understanding of light and electricity, 
leading to some striking changes in how physicists viewed the world. In this 
chapter, we look at the first revolution in relativity, then explore some of the 
ideas of Einstein’s Special Theory of Relativity.

There is no rest
Let’s start with a down-to-earth scenario. Consider a police officer pointing 
her radar gun at an approaching sports car from her car parked on the road-
side. She measures the sports car’s speed to be 90  km  h−1. This agrees with the 
speed measured by the driver of the sports car on his car’s speedometer. How-
ever, another police car drives towards the sports car in the opposite direction 
at 60  km  h−1. A speed radar is also operating in this car, and it measures the 
speed of the sports car to be 150  km  h−1. So each police officer has a different 
measurement for the speed of the sports car. Which measurement is cor-
rect? The answer is that they are both correct — the speed measured for the 
car is relative to the velocity 
of the observer — but 
only the speed measured 
by the officer at rest on the 
roadside is relevant when 
receiving a speeding ticket. 

The sports car is approa-
ching the oncoming police 
car at the same rate as if the 
police car was parked and 
the sports car had a reading 
of 150  km  h−1 on its speed-
ometer. We say that the 
speed of the car is relative 
to the observer rather than 
being an absolute quantity, 
agreed on by all observers. 
The significance of relative 
speed becomes all too 
clear in head-on collisions. 
For example, you might be 
driving at only 60  km  h−1, 
but if you collide head-on 
with someone doing the 
same speed in the opposite 
direction, the impact occurs 
for both cars at 120  km  h−1!

Unit 3 Relativity
Concept summary 
and practice 
questions

AOS 3

Topic 5

Concept 2

A quantity is relative when it 
has different values for different 
observers.

The radar gun would measure a different 
speed if it was in a moving vehicle.

A speed limit is the maximum 
allowed speed relative to the 
road.

Albert Einstein (1879–1955)
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150 km h−1 90 km h−1

90 km h−160 km h−1

Two different measurements of the speed of a car

Relativity is about the laws of physics being meaningful for all observers. 
Newton’s First Law of Motion states that an object will continue at constant 
velocity unless acted on by an unbalanced net force. The speed itself does not 
matter. In the example above, this law works for both of the police officers, as 
do the other laws of motion.

The Italian scientist Galileo Galilei (1564–1642) did not know about police 
cars and speed limits. His examples featured sailing ships and cannon balls, 
but the physics ideas were the same. In Galileo’s time, much of physics was 
still based on ancient ideas recorded by the Greek philosopher Aristotle  
(384–322  BC). Aristotle taught that the Earth was stationary in the centre of 
the universe. Motion relative to the centre of Earth was a basis for Aristotelian 
physics, so a form of relativity was key to physics even before Galileo. But Gal-
ileo had to establish a new understanding of relativity before it became widely 
accepted that the Earth moved around the Sun.

Galileo’s insight helped provide the platform for physics as we know it today, 
but the idea of a fixed frame of reference persisted. Following on from  Galileo, 
Isaac Newton considered the centre of mass of the solar system to be at abso-
lute rest. James Clerk Maxwell (1831–1879), who put forward the theory of 
electromagnetism, regarded the medium for electromagnetic waves (light) to 
be at rest. It was Einstein who let go of the concept of absolute rest, declaring 
that it was impossible to detect a place at absolute rest and therefore the idea 
had no consequence. Once again, relativity was updated to take into account 
the latest discoveries and enable physics to make enormous leaps of progress.

The speed (velocity) of bodies in motion is truly relative to whoever is meas-
uring it. We will return to Einstein’s advances shortly, but let’s look at some 
more examples from Galilean relativity. 

What should we measure speed relative to?

Aristotle had the
Earth at rest.

Galileo had the
Sun at rest.

Maxwell had the aether
at rest.

Einstein said it was
impossible to tell if

something was truly
at rest.

The principle of relativity
Consider the driver of the sports car discussed earlier. His position relative 
to features of the landscape he drives through is continuously changing, but 

Unit 3 Relative 
velocity
Concept summary 
and practice 
questions

AOS 3

Topic 5

Concept 3

Unit 3

See more
Relative velocity

AOS 3

Topic 5

Concept 3

Galileo Galilei (1564–1642), 
from a nineteenth-century 
engraving
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inside the car life goes on as normal. He has the same position, weight, mass 
and height; everything inside the car behaves just as he remembers it from 
when the car was parked. On a smooth road at constant speed, his passenger 
could pour a drink without difficulty. The effect of the bumps in the road 
would be indistinguishable from a situation in which the car was stationary 
and someone outside was rocking it. 

Nothing inside a vehicle moving with constant velocity can be affected by 
the magnitude of the velocity. If it was, we would need to ask: which velocity? 
If a velocity of 90  km  h−1 caused a passenger to have a mass of 50  kg, but a velo-
city of 150  km  h−1 caused the passenger to have a mass of 60  kg, we would have 
a problem. The driver cannot simultaneously observe his passenger to have 
two different masses.

The principle of relativity is the name that physicists give to this realisa-
tion. This states that the laws of physics do not depend on the velocity of the 
observer. Galileo played a major role in the development of the principle of 
relativity, and Newton’s laws of motion are fully consistent with it. Another way 
of describing the principle of relativity is that there is no way that anyone in the 
car can measure its velocity without making reference to something external to 
the car. The sports car driver can measure his speed relative to the two police 
officers mentioned above. He would measure that he is moving relative to each 
of them at different speeds, but he would not feel any difference. As long as the 
road is straight and smooth and the car is travelling at a constant speed, there is 
no way to detect that the car is moving at all! He could be stationary while one 
police car is approaching him at 90  km  h−1 and the other at 150  km  h−1. 

How can we tell who is actually speeding?

0 km h−1 120 km h−1

You are
speeding!

No,
you are!

Even on an aeroplane travelling smoothly at 700  km  h−1, we feel essentially 
the same as we do at rest. The only giveaway is the turbulence the aircraft 
experiences and the change in air pressure in our ears. Neither of these effects 
is dependent on the forward velocity of the plane. The laws of physics are the 
same: you can pour your can of drink safely, walk down the aisle, and drop a 
pencil and notice it fall vertically to the floor just as it would if you were on the 
ground. 

By introducing the principle of relativity, Galileo provided the necessary 
framework for important developments in physics. Physics builds on the 
premise that the universe follows some order that can be expressed as a set 
of physical laws. The Aristotelian ideas that were held at the time of Galileo 
suggested that a force is necessary to keep objects moving. This led to one of 
the major arguments against Earth’s motion: everyone would be hurled off the 
Earth’s surface as it hurtled through space, and the Moon would be left behind 
rather than remaining in orbit around Earth. Galileo’s physics, including the 
principle of relativity, helped to explain why this argument was wrong. Forces 
are not required to keep objects moving, only to change their motion. 
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The science of Galileo and Newton was spectacularly successful: it explained 
the motion of everything from cannon balls to planets. Later, however, as new 
theories of physics developed in the nineteenth century, physicists faced the 
challenge of how to make everything fit together. It was not until the early 
twentieth century that Einstein found a way to make sense of it all.

Examples of Galilean relativity
Here are some examples that support the Galilean principle of relativity.
1. If you are in a car stopped at the lights and another car next to yours slowly 

rolls past, it is difficult to tell whether you or the other car is moving if 
nothing but the other car is in view. 

2. In IMAX and similar films, viewers can feel as though they are going on 
a thrilling ride, even though they are actually sitting on a fixed seat in a 
cinema. Theme parks enhance this effect in virtual reality rides by jolting 
the chairs in a way that mimics movements you would feel on a real ride. 
Virtual reality rides are very convincing because what you see and feel 
corresponds with an expected movement, and your senses do not tell you 
otherwise. As long as the jolts correspond with the visual effects, there is 
no way of telling the difference. The motion or lack of motion of the seat is 
irrelevant.

A virtual reality ride

3. Acceleration does not depend on the velocity of the observer. An astronaut 
in a spacecraft travelling through deep space with constant velocity feels 
weightless, regardless of the magnitude of the velocity. She moves along 
with the same velocity as the spacecraft, as Newton’s first law would sug-
gest. When the spacecraft accelerates due to the force of its rocket engines, 
the astronaut feels pushed against the back wall of the spacecraft by a force 
that depends on the magnitude of the acceleration. The effect of the accel-
eration on the astronaut is noticeable, and may even cause the astronaut to 
lose consciousness if it is too great. 

4. When you are riding in a car with the window down, most of the wind you 
feel on your face is due to the motion of the car through the air. It is present 
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even on a still day. Only very severe winds exceed 60  km  h−1; whenever you 
drive  at greater than 60  km  h−1, your windscreen is saving you from gale-
force winds! Similarly, it is always windy on moving boats. This is because 
on deck you are not as well protected from the apparent wind as you are 
in a car.

5. Apparent wind becomes especially significant when sailing. As the boat 
increases its speed, the sailor notices that he is heading more into the wind, 
even though neither he nor the wind has changed direction relative to the 
shore. This leads the sailor to change the sail setting to suit the new wind 
direction. 

The faster the boat moves, the more the wind appears to blow from in front.

wind

apparent
wind

Boat moving forward

v(a)

(c)

(b)

Boat at rest

wind

apparent
wind

negative of
boat velocity

Apparent wind velocity is the difference 
between the wind velocity and the velocity 
of the boat.

Sample problem 3.1

Compare the following two scenarios in terms of velocity. 
1. A car travelling down the highway at 80  km  h−1 collides with a stationary 

car. 
2. A car travelling down the highway at 100  km  h−1 collides with a car travel-

ling at 20  km  h−1 in the same direction.

In the first scenario, the first car is travelling at 80  km  h−1 relative to the 
second car. 

In the second scenario, the first car is travelling at 100 − 20 = 80  km  h−1 relative 
to the second car. Although the speeds relative to the road in each case are dif-
ferent, the relative speeds of the cars are the same and will cause similar effects 
on collision.

Revision question 3.1

The key to Galilean relativity is that:
A. acceleration
B. velocity
C. time
D. mass
is relative. 

Solution:
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Frames of reference
To help make sense of all of the possible velocities, physicists consider frames of 
reference. A frame of reference involves a system of coordinates. For example, 
where you are sitting reading this book, you view the world through your frame 
of reference. You can map the position of things around you by choosing an 
origin (probably the point where you are), then noting where everything else 
is in reference to that: the window is one metre in front of you, the door is 
two metres behind you, and so on. Your reference frame also includes time, so 
you can see that the position of the window in front of you is not changing and 
you can therefore say its velocity is zero. 

A reference frame is a set of space and time coordinates that are stationary 
relative to an observer.

0

−3 m

−2 m

−1 m

0

1 m

2 m

3 m

1 m

2 m

When we say something is ‘at rest’, we mean it is at rest in the reference 
frame in which we view the world. In everyday life we have a tendency to take 
a somewhat Aristotelian point of view and regard everything from the perspec-
tive that the Earth is at rest. For example, another student walking behind you 
has her own reference frame. As she walks, your position in her frame of refer-
ence is moving. However, she would probably say that she is moving past you 
while you are stationary, rather than saying that she is stationary while you and 
the rest of the room are on the move! 

In many situations, considering the Earth to be at rest is a convenient 
assumption. In more complex examples of motion, such as sports events, car 
accidents involving two moving vehicles, or the motions of the Solar System, it 
can be useful to choose alternative frames of reference.

In classical physics, the differences between frames of reference are their 
motion and position. (‘Classical physics’, simply put, is the physics that pre-
dated Einstein’s discoveries leading to the laws of relativity and quantum mech-
anics.) In other words, position and speed are relative in classical physics. For 
example, I might record an object to have a different position than you would 
(it might be 3 metres in front of me but 4 metres behind you), and I might also 
record it as having a different speed (maybe it is stationary in my frame of ref-
erence but approaching you at 2  m  s−1). The position and speed are dependent 
on the observer. However, in classical physics all observers can agree on what 
3 metres and 2 m s−1 are. The rulers in my frame of reference are the same as 
the ones I see in yours, and the clocks in my frame of reference tick at the same 
rate as I measure those ticking in yours. Time and space are seen as absolute 
in the classical physics established by Galileo, Newton and the other early 
physicists. 

Unit 3 Events and 
frames
Concept summary 
and practice 
questions

AOS 3

Topic 5

Concept 1
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Frames of reference that are not accelerating are called inertial reference  
frames. An inertial reference frame moves in a straight line at a constant speed 
relative to other inertial reference frames. 

Sample problem 3.2

Consider the reference frame in which a spacecraft is initially at rest (reference 
frame A). Astronaut Axel is in the spacecraft and he fires its rockets for 10  s, 
achieving a final velocity of 100  m  s−1. Show that the acceleration of the rocket 
does not depend on the reference frame. 

We will show this by determining what the acceleration of the spacecraft is in 
reference frame A and randomly choosing another inertial reference frame, B, 
to see if the acceleration is the same.

According to the measurements made in A, the rocket accelerated for 10  s at:

a
v

t
100 m s 0 m s

10 s

10 m s .

1 1

2

= ∆

= −

=

− −

−

Axel would feel a force towards the rear of the spacecraft similar in magni-
tude to his weight on Earth.

a = 10 m s−2

v = 100 m s−1

t = 10 s

v = 150 m s−1

t = 10 s
v = 50 m s−1

t = 0 

v = 0
t = 0

x

Axel’s spacecraft
viewed from
reference frame A

Axel’s spacecraft
viewed from
reference frame B

Now we choose a different reference frame. Effie is in reference frame B in 
another spacecraft, moving at 50  m  s−1 relative to A. She also measures the accel-
eration of Axel’s spacecraft from her reference frame. Effie measures the velocity 
of Axel’s spacecraft to change from 50  m  s−1 to (50 + 100)  m  s−1 in 10  s. From B:

a
v

t
150 m s 50 m s

10 s

10 m s .

1 1

2

= ∆

= −

=

− −

−

The acceleration is the same whether it is measured from frame A or frame B. 
We observe that it will still be 10  m  s−2 regardless of the speed of the reference 
frame.

Reference frames that are not 
accelerating are called inertial 
reference frames.

Solution:
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An invariant quantity is a quantity that has the same value in all reference 
frames. In classical physics, mass is the same in all reference frames, so all 
observers will observe that Newton’s second law holds. In sample problem 3.2, 
all observers would agree on the forces acting on the astronauts. Unlike velo-
city, acceleration in Galilean relativity does not depend on the motion of the 
frame of reference; it is also invariant.

It is interesting to consider the motion of Axel’s spacecraft as viewed by Effie 
in reference frame B. Reference frame B is in an inertial reference frame as it is 
not accelerating. Axel, however, looks back at Effie and sees her falling behind 
at an increasing rate. Is it Axel or Effie that is accelerating? The answer is clear 
to them: the force experienced by Axel is not felt by Effie. The acceleration 
can be measured by this force without any reference to the relative motions of 
other objects; an object’s velocity cannot. 

Revision question 3.2

(a) Explain what is meant by the statement ‘speed is relative to the frame of 
reference’. 

(b) By referring to Newton’s laws of motion, explain why it is important for 
acceleration to be invariant, but velocity can be relative. 

(c) Explain why the principle of relativity is so important to physics.

Electromagnetism brings new 
challenges
Galilean relativity seemed to work well for the motion of massive bodies, but 
by the nineteenth century physicists were learning much more about other 
physical phenomena.

James Clerk Maxwell’s theory of electromagnetism drew together the key 
findings of electricity and magnetism to completely describe the behaviour of 
electric and magnetic fields in a set of four equations. One of the outcomes of 
this was an understanding of electromagnetic waves. The equations dictated 
the speed of these waves, and Maxwell noticed that the speed was the same 
as what had been measured for light. He suggested that light was an electro-
magnetic wave and predicted the existence of waves with other wavelengths 
that were soon discovered, such as radio waves. A medium for these fields and 
waves was proposed, called the luminiferous aether. The speed of light, c, was 
the speed of light relative to this aether. 

Understanding electromagnetic phenomena was the foundation for  Einstein’s 
special relativity. In particular, the physicists of the nineteenth century, such as 
Michael Faraday, knew that they could induce a current in a wire by moving 
a magnet near the wire. They also knew that if they moved a wire through a 
magnetic field, a current would be induced in the wire. They saw these as two 
separate phenomena. 

Imagine this: two students are in different Physics classes. Annabel has 
learned in her class that electrons moving in a magnetic field experience 
a force perpendicular to their direction of motion and in proportion to the 
speed. Her friend Nicky has learned in her class that a current is induced in a 
loop of wire when the magnetic flux through the wire changes. Are these two 
different phenomena? Because they have also learned about the principle of 
relativity, Annabel and Nicky have doubts. They get together after class to per-
form experiments. The force depends on the speed. Annabel holds a stationary 
loop of conducting wire. Nicky moves the north pole of a magnet towards the 
loop, and they notice that a current is present in the wire as she does this. 

An invariant quantity is a quantity 
that has the same value in all 
reference frames.
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Nicky says that this is consistent with what she has learned. 
The conclusion is that a current is induced by a changing 
magnetic field. Then Nicky holds the magnet still so that the 
magnetic field is not changing. Annabel moves her loop of 
wire towards Nicky’s magnet. Annabel states that the result 
agrees with what she learned in class — that electrons and 
other charged particles experience a force when moving in 
a magnetic field. 

Einstein realised that there was only one phenomenon at 
work here. Both experiments are doing exactly the same 
thing, and it is only the relative speeds of the coil and the 
magnet that are important. This may seem obvious, but to 
make this jump it was necessary to discard the idea that the 
electric and magnetic fields depended on the luminiferous 
aether. It was the relative motion that was important, not 
whether the magnet or charge was moving through the 
aether.

Before Einstein’s realisation, the understanding was that 
if light moves through the aether, then the Earth must also 
be moving through the aether. Changes in the speed of light 
as the Earth orbits the Sun should be detectable.  Maxwell 
predicted that electromagnetic waves would behave like 
sound and water waves, in that the speed of electromag-
netic waves in the medium would not depend on the 
motion of the source or the detector through the medium.

To understand the significance of this aether, consider the 
sound produced by a jet plane. When the plane is stationary 
on the runway preparing for takeoff, the sound travels away 
from the plane at the speed of sound in air, about 340  m  s−1. 
When the plane is flying at a constant speed, say 200  m  s−1, 
the speed of sound is still 340  m  s−1 in the air. However, to 
find the speed relative to the reference frame of the plane, 
we must subtract the speed of the plane relative to the air. 
From this we find that the sound is travelling at:

  340 − 200 = 140  m  s−1 in the forward direction relative to 
the plane

  340 − −200 = 540  m  s−1 in the backward direction relative 
to the plane.

v = 540 m s−1

v = 0 m s−1(a)  Velocity of sound relative to plane

v = 140 m s−1

v = 340 m s−1v = 340 m s−1

(b)  Velocity of sound relative to air v = 200 m s−1

Sound moving away from a 
plane

An experiment in electromagnetism

Annabel is stationary Nicky moves

Annabel moves Nicky is stationary
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In this example we could measure the speed of the plane through the air by 
knowing the speed of sound in air (340  m  s−1) and measuring the speed of a 
sound sent from the back of the plane to the front (140  m  s−1) in the reference 
frame of the plane. As long as the plane is flying straight, we could infer the 
speed of the plane relative to the air by setting the forward direction as positive 
and subtracting the velocities: 

340 − 140 = 200  m  s−1.
The speed of the plane has been measured relative to an external reference 
frame, that of the air, and therefore this example has not violated Galilean rela-
tivity. As light had been shown to travel in waves, scientists felt they should be 
able to measure Earth’s speed through the aether in the same way. 

Sample problem 3.3

Explain how Maxwell’s concept of electromagnetic waves such as light chal-
lenged the Galilean principle of relativity.

The principle of relativity states that the laws of physics hold true in all inertial 
reference frames. Maxwell predicted that the speed of light was constant relative  
to the aether. Different explanations were required for electromagnetic phen-
omena depending on the speed of magnets and charges through the aether. 

Revision question 3.3

Assuming that electromagnetic waves travel at c relative to the aether, determine 
the speed of light shining from the rear of a spacecraft moving at half the speed of 
light relative to the aether according to Kirsten, who is on board the spacecraft.

The Michelson–Morley experiment
In 1887, Albert Michelson and Edward Morley devised a method of using inter-
ference effects to detect slight changes in time taken for light to travel through 
different paths in their apparatus. As with sound travelling from the front and 
rear of a plane through the air, the light was expected to take different amounts 
of time to travel in different directions through the luminiferous aether as the 
Earth moved through it. Much to their astonishment, the predicted change in 
the interference pattern was not observed. It was as though the speed of light 
was unaffected by the motion of the reference frame of its observer or its source!

The idea behind the Michelson–Morley experiment

v c relative to
the aether

c relative to
the aether

light moving away from
Earth slower than c (c − v)

light moving away from
Earth faster than c (c + v)

Einstein’s two postulates of special relativity
Physicists tried all sorts of experiments to detect the motion of Earth through 
the luminiferous aether, and they attempted to interpret the data in ways that 
would match the behaviour of light with what they expected would happen. 
Their attempts were unsuccessful.

Solution:

eLesson
Michelson–Morley experiment
eles-2561
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Einstein managed to restore order to our understanding of the universe. While 
others suspected the new theory of electromagnetism to be wrong, Einstein took 
apart the established theory of Newtonian mechanics, even though its success 
had given physicists reason to believe in relativity in the first place. Einstein dared 
to see what would happen if he embraced the results of the Maxwell equations 
and the experiments with light, and accepted that the speed of light was invariant. 
The results were surprising and shocking, but this bold insight helped usher in the 
modern understanding of physics. 

Einstein agreed with Galileo that the laws of physics must be the same for 
all observers, but he added a second requirement: that the speed of light in a 
vacuum is the same for all observers. The speed of light is not relative, as had 
been expected by those who went before him, but invariant. He set these two 
principles down as requirements for development of theoretical physics. They 
are known as Einstein’s two postulates of special relativity:
1. The laws of physics are the same in all inertial (non-accelerated) frames of 

reference.
2. The speed of light has a constant value for all observers regardless of their 

motion or the motion of the source.
The physics based on these postulates has become known as special relativity. 
It is ‘special’ because it deals with the special case where there is no gravity. To 
deal with gravity, Einstein went on to formulate his theory of general relativity, 
but that is beyond the scope of this course.

Einstein’s postulates were radical. The consequence of his insistence that 
physics be based on these two postulates was that ideas that had been taken for 
granted for centuries were thrown out. As well as the removal of the luminiferous 
aether, the intuitive notions that time passed at the same rate for everyone, that 
two simultaneous events would be simultaneous for all observers, and that dis-
tance and mass are the same for all observers had to be discarded.

Einstein’s work explained why the velocity of Earth could not be detected. 
His first postulate implied that there is no experiment that can be done on 
Earth to measure the speed of Earth. We must take an external reference 
point and measure the speed of Earth relative to that point in order for the speed 
of Earth to have any meaning. With his second postulate, Einstein also declared 
that it does not matter which direction the Michelson–Morley apparatus was 
pointing in; the light would still travel at the same speed. No change in the inter-
ference pattern should be detected when the apparatus was rotated.

Sample problem 3.4

How do Einstein’s postulates differ from the physics that preceded him?

Firstly, the principle of relativity is applied to all laws of physics, not just the 
mechanics of Galileo and Newton. 
 Secondly, the speed of light is constant for all observers. Before Einstein, the 
speed of light was assumed to be relative to its medium, the luminiferous aether.

Revision question 3.4

Einstein realised that something that had been regarded as relative was actually 
invariant. As a result of this, quantities that had been regarded as invariant now 
had to be regarded as relative. What did he find to be invariant and what relative?

Broadening our horizons
Why did scientists before Einstein (and most of us after Einstein) not notice 
the effects of light speed being invariant? Newton’s laws provided a very good 
approximation for the world experienced by people before the twentieth century. 

Solution:
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By the beginning of the twentieth century, however, physicists were able to take 
measurements with amazing accuracy. They were also discovering new par-
ticles, such as electrons, that could travel at incredible speeds. Indeed, these 
speeds were completely outside the realm of human experience. Light travels at 
c = 3 × 108  m  s−1 or 300  000  km per second. (To be precise, c = 299  792  458 m  s−1.) 
At this speed, light covers the distance to the Moon in roughly 1.3 seconds! 

Sample problem 3.5

To get a sense of how fast light travels, Andrei considers how long it would 
take to accelerate from rest to a tenth of this great speed at the familiar rate of 
9.8  m  s−2 — the acceleration of an object in free fall near the surface of Earth. 

 u = 0  m  s−1, v = 0.1c = 3 × 107  m  s−1, a = 9.8  m  s−2, t = ?
 v = u + at
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It would take more than 35 days to achieve a speed of 0.1c! (This is the 
fastest speed for which use of Newtonian kinematics still gives a reasonable 
approximation.)

This graph shows how speed as a fraction of c increases over time 
at an acceleration of 9.8  m  s−2.
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Revision question 3.5

With an acceleration of 9.8  m  s−2, occupants of a spacecraft in deep space would 
reassuringly feel the same weight they feel on Earth. What would happen to the 
astronauts if the acceleration of the spacecraft was much greater to enable faster 
space travel?

Note: When considering speeds 
at a significant fraction of the 
speed of light, it is easier to 
use the speed of light as the 
unit. For example, instead of 
1.5 × 108  m  s−1, a physicist can 
simply write 0.5c. 

Solution:
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Light speed really is beyond our normal experience! Maybe Einstein’s pre-
dictions would not be so surprising if we had more direct experience of objects 
travelling at great speeds, but as it is they seem very strange.

AS A MATTER OF FACT

The distance light travels in a year is known as a light-year. Even on Earth, 
we now measure distance in terms of the speed of light. One metre is 

defined as the distance light travels in exactly 
1
c

1
299 792 458

=  of a second.

The speed of light is constant
This simple statement of Einstein’s second postulate may not seem remark-
able. To highlight what it means, we will again compare light with sound. In 
the nineteenth century, sound and light were thought to have a lot in common, 
because they both exhibited similar wavelike behaviours, such as diffraction 
and interference. However, sound is a disturbance of a medium, whereas light 
does not require any medium at all. Sound has a speed that is relative to its 
medium. If the source of the sound is moving through the medium, then the 
speed of the sound relative to the source is different to the speed of sound rel-
ative to the medium. Its speed can be different again from the reference frame 
of the observer.

Einstein was saying there is no medium for light, so the concept of the 
speed of light relative to its medium is not meaningful. Light always moves 
away from its source at 299  792  458  m  s−1 and always meets its observer at 
299  792  458  m  s−1, no matter what the relative speeds of the observer and the 
source. Even if the Earth were hurtling along its orbit at 0.9c, the result of the 
Michelson–Morley experiment would have been the same. 

As an example, consider a spacecraft in the distant future hurtling towards 
Earth at 0.5c. The astronaut sends out a radio message to alert Earth of his 
impending visit. (Radio waves, as part of the electromagnetic spectrum, 
have the same speed as visible light.) He notices that, in agreement with the 
Michelson–Morley measurements of centuries before, the radio waves move 
away from the spacecraft at c. With what speed do they hit the Earth? Relative 
velocity, as treated by Galileo, insists that as the spacecraft already has a speed 
of 0.5c relative to the Earth, then the radio waves must strike the Earth at 1.5c. 
However, this does not happen. The radio waves travel at c regardless of the 
motion of the source and the receiver.

0.5c
c

radio 
signal

A spacecraft approaching Earth at 0.5c. The radio signal is travelling at c relative 
to both Earth and the spacecraft!

This concept was very difficult for physicists to deal with, and many resisted 
Einstein’s ideas. But the evidence is irrefutable. Newtonian physics works as 
a very good approximation only for velocities much less than c. The faster 
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something moves, the more obvious it is that the Newtonian world view does 
not match reality. It was not until the twentieth century that scientists dealt 
with objects (such as cosmic rays) moving at great speeds. Satellites in orbit 
need to be programmed to follow Einstein, rather than Newton, if they are to 
provide accurate data.

Space–time diagrams
In 1908, Hermann Minkowski invented a useful method of depicting situ-
ations similar to the spacecraft scenario described above. His diagrams are like 
 distance–time graphs with the axes switched around. However, they differ from 
time–distance graphs in an important way. When reading these diagrams, the 
markings on the scales for time and position are only correct for the reference 
frame in which the axes are stationary.

Sample problem 3.6

Light reflecting off planet A radiates in all directions at c so that after one year, 
the light that left the planet forms a circle one light-year in radius. Another 
planet, B, passes planet A at great speed, just missing it. Light from B’s surface 
also leaves at c, according to the second postulate, forming a circle around it. 
How can both planets be at the centre of their light circles as the postulates 
demand?

Draw Minkowski diagrams for each planet. Diagram (a) shows the situation for 
planets A and B from the reference frame of the planet, with the planet at the 
centre — the labels refer to planet A, but the diagram is the same for both planets. 
The light radiates in all directions at the same rate, and the diagram shows where 
the light in one direction and the opposite direction would be after one year.

Diagram (b) shows what is happening on B according to observers on A. The 
light moving out behind the moving planet reaches the one-light-year distance 
sooner than the light moving out from the front! But we know that planet B is 
at the centre of this light circle. The way to achieve this is to move away from 
absolute space and time and understand that these are relative to the observer. 
When we do this, we see that it is possible for planet  B to be at the centre 
of the light circle. However, this requires that A and B disagree about when 
two events occur. According to planet A, the different sides of the light circle 
reach the light-year radius at different times, but from planet B this must occur 
simultaneously.

Events that are simultaneous in one reference frame are not simultaneous in another.

1 light-year
behind A

planet A 1 light-year
ahead of A

x

t

light beams

1 light-year
behind B

planet B
from A

1 light-year
ahead of B

(a) t'(b)

x'

Solution:
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Revision question 3.6

State whether the simultaneity of events is invariant or relative in:
(a) classical physics
(b) special relativity.

Time dilation
The passing of time can be measured in many ways, including using the pos-
ition of the Sun in the sky, the position of hands on a watch, the changing of 
the seasons, and the signs of a person ageing. Galileo is known to have made 
use of the beat of his pulse, the swinging of a pendulum and the dripping of 
water. As already stated, Newtonian physics assumed that each of these clocks 
ticked at the same rate regardless of who was observing them. However, the 
theory of relativity shows that this assumption that time is absolute is actually 
wrong. This error becomes apparent when the motion of the clock relative to 
the observer approaches the speed of light.

Consider a simple clock consisting of two mirrors, A and B, with light 
reflecting back and forth between them. This is an unusual clock, but it is very 
useful for illustrating how time is affected by relativity. Experiments that involve 
pursuing an idea on paper without actually performing the experiment are 
common in explanations of relativity. They are known as thought experiments.

Let the separation of the mirrors be L. The time for the pulse of light to pass 
from mirror A to mirror B and back is calculated in the conventional way:

L
t

t
L

c
2

2
c

0

0

=

=

where t0 is the time for light to travel from A to B and back, as measured in the 
frame of reference in which the clock is at rest. We will define this time, t0, to be 
one tick of the clock. In this case, the position of the clock does not change in 
the frame of reference. The passing of time can be indicated by two events sep-
arated by time but not by space — the event of the photon of light first being at 
A and the event of the photon being back at A.

A light clock (a) at rest relative to the observer, and (b) in motion relative to the 
observer

L L

(a)
B

A

(b)
B'

A'

B'

A'

B'

v

vtAB

Imagine an identical clock, with mirrors A′ and B′, moving past this light 
clock at speed v. At what rate does time pass on this moving clock according to 
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explore what the laws of physics 
predict would happen. 
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the observer? Label the time interval measured by this clock t to distinguish it 
from t0. The light leaves A′ and moves towards B′ at speed c. The speed is still 
c even though the clock is moving, as stated by Einstein’s second postulate. 
In the time the light makes this journey, the clock moves a distance d = vtAB, 
where tAB is the time the light takes to travel from A′ to B′. Diagram (b) depicts 
this situation and shows that the light in the moving frame of reference has 
further to travel than the light in the rest frame. Using Pythagoras’s theorem, 
the light has travelled a distance of L vt2 ( )2

AB
2+  from A′ to B′ and back to A′. 

This is a greater distance than 2L, given v ≠ 0 and c is constant. Therefore, the 
time the light takes to complete the tick must be greater than for the rest clock.

The speed of the light relative to the observer is:

=

=
+

d
t

L vt

t

c

c
2 ( )

2

2
AB

2

AB

Transpose the equation to make a formula for t:

= +

= +

t L v t

t L v t

2c 2 ( )

c ( ) ( )

AB
2 2

AB
2

2
AB

2 2 2
AB

2

But t
t
2AB = .

( )
− =

− =

=
−

=
−

t v t
L

t v L

t
L

v

L

v

c
4 4

c 4

2

c

2

c 1
c

2 2 2 2
2

2 2 2 2

2 2

2

2

We have already determined that t
L2

c0 = , so

=
−

t
t

v
1

c

.0
2

2

The expression 

− v

1

1
c

2

2

 appears frequently in special relativity. So that 

we do not have to write it all the time, it is simply called gamma, γ . It is also 
known as the Lorentz factor.

We can now write the equation as γ=t t0 .
The equation γ=t t0  is the known as the time dilation formula. This formula 

enables us to determine the time interval between two events in a reference 
frame moving relative to an observer. 

Note that gamma is always greater than 1. As a result, t will always be greater 
than t0, hence the term ‘time dilation’. In a reference frame moving relative to 
the observer like this, the two events that we are using to mark the time interval, 
the time between the light being at A, occur at different points in space. The 

Time dilation describes the 
slowing of time by clocks moving 
relative to the observer.
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time t0 is the time measured in a frame of reference where the events occur at 
the same points in space. It is known as the proper time. This is not proper in 
the sense of correct, but in the sense of property. It is the time in the clock’s 
own reference frame, whatever that clock might be.

Examples: 
1. A mechanical clock’s large hand moves from the 12 to the 3, showing that 

15  minutes have passed. Fifteen minutes is the proper time between the 
two  events of the clock showing the hour and the clock showing quarter 
past the hour. However, if that clock was moving relative to us at great 
speed, we would notice that the time between these two events was longer 
than 15 minutes. The time is dilated.

2. A candle burns 2 centimetres in 1 hour. One hour is the proper time between 
the events of the candle being at a particular length and the candle being 
2 centimetres shorter. If the candle was moving relative to the observer, she 
would notice that it took longer than 1 hour for the candle to burn down 
2 centimetres. 

3. A man dies at 89 years of age. His life of 89 years is the time between the 
events of his birth and his death in his reference frame. To an observer 
moving past at great speed, the man appears to live longer than 89 years. 
He does not fit any more into his life; everything he does appears to the 
observer as if it was slowed down.

Sample problem 3.7

James observes a clock held by his friend Mabry moving past at 0.5c. He 
notices the hands change from 12  pm to 12.05  pm, indicating that 5 minutes 
have passed for the clock. How much time has passed for James?

The proper time t0 is the time interval between the two events of the clock 
showing 12  pm and the clock showing 12.05  pm, which is 5 minutes.

 v
v

1

1
c

1.155 when = 0.5c.
2

2

γ =
−

=

So t = t0γ  = 5 × 1.155 = 5.775 minutes.
James notices that the moving clock takes 5.775 minutes (or 5  minutes 
46.5  seconds) for its hands to move from 12  pm to 12.05  pm.

Revision question 3.7

In another measurement, James looks at his own clock and waits the 5 minutes 
it takes for the clock to change from 1  pm to 1.05  pm. He then looks at Mabry’s 
clock as she moves past at 0.5c. How much time has passed on her clock?

Unlike in Newtonian physics, time intervals in special relativity are not 
invariant. Rather, they are relative to the observer.

Sample problem 3.8

Mabry is travelling past James at 0.5c. She looks at James and sees his clock 
ticking. How long does she observe it to take for his clock to indicate the 
passing of 5 minutes?

In this case it is James’s clock that is showing the proper time. Mabry notices 
that 5.775 minutes pass when James’s clock shows 5 minutes passing. These 
situations are symmetrical. Mabry sees James as moving at 0.5c, and James 
sees Mabry moving at 0.5c, so her measurement of time passing is the same 
as his. 

Unit 3 Proper time
Concept summary 
and practice 
questions

AOS 3

Topic 5

Concept 6

The proper time between two 
events is the time measured in 
a frame of reference where the 
events occur at the same point in 
space. The proper time of a clock is 
the time the clock measures in its 
own reference frame.

Solution:

Solution:
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Revision question 3.8

Aixi listens to a 3-minute song on her phone. As soon as she starts the song she 
sees her friend Xiaobo start wrestling with his brother on a spaceship moving by 
at 0.8c. When the song finishes, she sees Xiaobo stop wrestling. How long were 
the two boys wrestling for?

Sample problem 3.9

A car passes Eleanor at 20  m  s−1. She compares the rate that a clock in the car 
ticks with the rate the clock in her hand ticks. 

v

1

1
c

1.000 000 000 000 0022
2

2

γ =
−

= when v = 20  m  s−1.

The difference between the rates of time in the two perspectives is so small that 
it is difficult to calculate, much less to notice it. 

Revision question 3.9

Jonathan observes a clock on a passing spaceship to be ticking at half the rate 
of his identical clock. What is the relative speed of Jonathan and the passing 
spaceship?

Newton’s assumption that all clocks tick at the same rate, regardless of their 
inertial reference frame, was very reasonable. Learning the very good approxi-
mation of Newton’s laws is well justified. They are simpler than Einstein’s laws, 
and they work for all but the highest speeds. A good theory in science has to 
fit the facts, and Newton’s physics fit the data very successfully for 200 years. It 
was a great theory, but Einstein’s is even better.

If Newton knew then what we know now, he would realise that his theories 
were in trouble. At speeds humans normally experience, time dilation is negli-
gible, but the dilation increases dramatically as objects approach the speed of 
light. If you passed a planet at 2.9 × 108  m  s−1, you would measure the aliens’ 
usual school lessons of 50 minutes as taking 195 minutes. An increase in speed 
to 2.99 × 108  m  s−1 would dilate the period to 613 minutes. If you could achieve 
the speed of light, the period would last forever — time would stop. 

Photons do not age, as they do not experience time passing!

Time dilation and modern technology
Time dilation has great practical significance. A global positioning system (GPS) 
is able to tell you where you are, anywhere on Earth, in terms of longitude, lati-
tude and altitude, to within a few metres. To achieve this precision, the system 
has to compensate for relativistic effects, including time dilation, because it 
depends on satellites moving in orbit. Einstein’s general relativity also shows that 
the difference in gravity acting on a satellite in orbit affects the time significantly. 
Nanosecond accuracy is required for a GPS, but if Newtonian physics was used 
the timing would be out by more than 30 microseconds. GPSs are widely used in 
satellite navigation, and ships, planes, car drivers and bushwalkers can find their 
bearings far more accurately than they ever could using a compass.

Length contraction
Once we accept that simultaneity of events and the rate that time passes are 
relative, we have to accept that length must be relative as well. The length of 
an object is simply the distance between the two ends of the object. To find 

Solution:

With a GPS device you can 
know your position to within a 
few metres.
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that distance, the position of both ends must be noted at the same time. If they 
were measured at different times, a moving object would have changed pos-
ition, so the distance between the end that was measured second and the end 
that was measured first would have changed. The fact that any two inertial ref-
erence frames do not agree on which events are simultaneous is going to cause 
the measurement of length to be different in different reference frames. The 
speed of light is invariant and time is relative, so we have even more reason to 
doubt that lengths will be the same for all observers.

A clever thought experiment of Einstein’s enables us to determine the effect 
the speed of an observer has on a length to be measured. It is essentially the 
same as the thought experiment used to derive the time dilation equation, but 
with the light clock tipped on its side so that its length is aligned with the direc-
tion of its motion.

Light journeys in (a) a clock at rest and (b) a clock moving to the right at speed v

(a) A B

Lo

(b) A B

L vtAB

vtBAL

From the reference frame of the clock, again t
L2

c0 = . What about the reference 

frame of an observer with a speed of v relative to the clock? We can measure 
the distance between the ends of the clock using the time for light to travel 
from one end to the other and back.

From A to B:

L + vtAB = ctAB

where
L = the length of the clock as observed by the moving observer
vtAB = the distance the clock has moved in the time the light passes from A 

to B
ctAB = the distance the light has travelled passing from A to B.

Transposing the equation to make tAB the subject:

t
L

vcAB =
−

.
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From B to A:

L − vtBA = ctBA

where
vtBA = the distance the clock has moved in the time the light passes from B 

back to A
ctBA = the distance the light has travelled passing from B back to A.

Transposing the equation to make tBA the subject:

t
L

vcAB =
+

.

As A moves to meet the light, the time tBA is less than tAB. The total time is:

t t t

L
v

L
v

Lc
v
L
v

c c
2

c
2

c 1
c

.

AB BA

2 2

2

2

= +

=
−

+
+

=
−

=
−⎛

⎝⎜
⎞
⎠⎟

According to the time dilation formula:

=
−

t
t

v
1

c

.0
2

2

Substituting this for our time in the moving clock gives:

t

v

L
v
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L

v

1
c

2

c 1
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Substituting t
L2
c0

0=  gives:

⇒

L L

v

L
L

v
L

L

2
c

2

c 1
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1
c

or .

0
2

2

0 2

2

0

γ

=
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=
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The formula L L
v

1
c0

2

2= −  is known as the Lorentz contraction formula after 

one of the early pioneers of relativity theory, Hendrik Antoon Lorentz (1853–
1928). The Lorentz contraction is the shortening of an object in its direction of 
motion when measured from a reference frame in motion relative to the object.

The proper length of an object, L0, is the length measured in the rest frame 
of the object. L is the length as measured from an inertial reference frame 

The proper length of an object is 
the length measured in the rest 
frame of the object.
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travelling at a velocity v relative to the object. This change in length applies 
only to the length along the direction of motion. The other dimensions are not 
affected by this contraction.

AS A MATTER OF FACT

George Fitzgerald and Hendrik Lorentz independently proposed an 
explanation for the result of the Michelson–Morley experiment (in 1889 
and 1892 respectively). If the length of the apparatus contracted in the 
direction of Earth’s movement, then the light would take the same time 
to travel the two paths. This explanation assumed that the aether existed 
and that light would travel at constant speed through it; therefore, light 
would travel at different speeds relative to Earth as Earth moved through 
the aether. This explanation was not completely satisfying as there was no 
known force that would cause the contraction, and the aether had never 
been directly detected. The contraction would be measured by those in 
the reference frame at rest with respect to the aether. 

In special relativity, any observer in motion relative to an object 
measures a contraction. As the contraction is simply a feature of observ-
ation from different reference frames, no force is required to cause the 
contraction. Nothing actually happens to the object in its reference frame.

The Lorentz contraction is negligible at velocities we commonly experience. 
Even at a relative speed of 10% of the speed of light, the contraction is less than 
1%. As speed increases beyond 0.1c, however, the contraction increases until 
at relative speed c, the length becomes zero.

Sample problem 3.10

Observers on Earth observe the length of a spacecraft travelling at 0.5c to have 
contracted. By what percentage of its proper length is the spacecraft contracted 
according to the observers?

 
γ

γ

=

=

=

=

L
L

L
L

1

1
1.155
0.866

0

0

The spacecraft appears to be only 0.866 or 86.6% of its proper length. This is a 
contraction of 13.4%.

Revision question 3.10

Rebecca and Madeline take measurements of the journey from Melbourne to 
Sydney. Rebecca stays in Melbourne and stretches a hypothetical tape measure 
between the two cities. Madeline travels towards Sydney at great speed and 
measures the distance with her own measuring tape that is in her own reference 
frame.
(a) How would the two measurements compare, assuming that perfect preci-

sion could be achieved?
(b) Which measurement could be considered to be the proper length of the 

journey? Explain.
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A spaceship travelling at 
high speed has its length 
contracted. The contraction is 
only in the direction of motion 
of the spaceship.

at rest

v = 0.86c
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AS A MATTER OF FACT

The twins paradox
A paradox is a seemingly absurd or contradictory statement. Relativity 
provides a few paradoxes that are useful in teaching the implications of 
relativity. The ‘twins paradox’ is probably the best known. Despite its 
name, the twins paradox is explained fully by the logic of relativity.

Imagine a spacecraft that starts its journey from Earth. After 3 years 
in Earth time it will turn around and come back, so that those on Earth 
measure the total time between the events of the launch and the return 
to take 6 years. The astronaut, Peter, leaves his twin brother, Mark, 
on Earth. During this time, Peter and Mark agree that Earth has not 
moved from its path through space, it is Peter in his spaceship who has 
gone on a journey and has experienced the effects of acceleration that 
Mark has not. Mark  measures the length of Peter’s journey from Earth. 
His measurement is longer than Peter’s due to length contraction, but 
the speed of Peter is measured relative to Earth. They disagree on dis-
tance travelled but not speed, so they must disagree on time taken. This 
is not just an intellectual dispute — the difference in time will show in 
their ageing, with Peter actually being younger than Mark on his return  
to Earth.

We all go on a journey into the future; we cannot stop time. Relativity 
shows us that the rate that time progresses depends on the movements 
we make through space on the journey. Coasting along in an inertial 
 reference frame is the longest path to take. Zipping through different ref-
erence frames then returning home enables objects to reach the future 
in a shorter time: they take a longer journey through space but a shorter 
journey through time.

The twins scenario may sound incredible, but it has been verified 
experimentally. The most accurate clocks ever built are atomic clocks. 
They make use of the oscillation of the atoms of particular elements. 
The period of this oscillation is unaffected even by quite extreme tem-
peratures and accelerations, making the clocks without rival in terms of 
accuracy. These clocks have been flown around the world on airliners, 
recording less elapsed time than for similar clocks that remained on the 
ground. The effect is tiny, but the clocks have more than adequate preci-
sion to detect the difference. The difference measured is consistent with 
the time difference predicted by special relativity.

AS A MATTER OF FACT

The parking spot paradox
Can a long car enter a parking spot that is too short for it by making use 
of length contraction? The answer is yes and no. To explain, consider 
another famous paradox of relativity.

Charlotte’s car is 8 m long and she proudly drives it at a speed of 0.8c. 
She observes her friend Alexandra, who is stationary on the roadside, and 
asks her to measure the length of her car. (For the sake of argument, we 
will ignore the issues of where a car could go at such a huge speed, and 
how Alexandra communicates with Charlotte and measures the car.) 

Alexandra says that Charlotte must be dreaming if she thinks her car is 
8 m long, because she measures it to be only 4.8  m long. She believes her 
measurements to be accurate.
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To prove her point, Alexandra marks out a parking spot 4.8  m long. 
She says that if Charlotte can park her car in the spot, then the car is not 
as long as she thinks. Charlotte argues that her car will not fit in a 4.8  m 
parking spot, but she agrees to the test.

From Charlotte’s frame of reference, the parking spot would be merely 
2.9  m long. This is because it has a length contraction due to the car’s rela-
tive motion of 0.8c. Alexandra’s measuring equipment detects that the 
front of the car reaches the front of the parking spot at the same instant as 
the back of the car fits in the back. However, much to Alexandra’s amaze-
ment, the stopped car is 8  m long. Charlotte and Alexandra now agree that 
the stopped car does not fit the 4.8  m parking spot, and that it has a length of 
8  m. This may at first seem impossible, which is why it is sometimes called 
a paradox. Once we consider that Charlotte and Alexandra do not agree on 
which events are simultaneous, the paradox is resolved. Alexandra meas-
ured the front and the back of the car to be within the parking spot at the 
same time but did not check that the front and back had stopped.

The parking spot paradox

(b) The view from 
 Charlotte’s frame
 of reference

(a) Alexandra’s view when the back of 
 the car enters the parking spot

A note on seeing relativistic effects
In this chapter, we use the term observer frequently. Much of the imagery 
used in teaching relativity is in principle true but in practicality fantasy. Seeing 
anything in detail that is moving at close to the speed of light is not feasible. 
However, measuring distances and times associated with these objects is 
reasonable. Images formed of objects moving at speeds approaching c will be 
the result of time dilation, length contraction and other effects including the 
relativistic Doppler effect and the aberration of light.

Imagine speeding through space in a very fast spacecraft. When you planned 
your trip on Earth, you forgot to take relativity into account. Everything on 
board would appear normal throughout the trip, but when you looked out the 
front window, the effects of relative speed would be obvious. Some examples 
of what you would see include: aberration of light causing the stars to group 
closer together, so that your forward field of vision would be increased; the 
Doppler effect causing the colours of stars to change; and the voyage taking 
much less time than you expected.

The journey of muons
Bruno Rossi and David Hall performed a beautiful experiment in 1941, the 
results of which are consistent with both time dilation and length contraction. 
Earth is constantly bombarded by energetic radiation from space, known as 
cosmic radiation. These rays collide with the upper atmosphere, producing 
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particles known as muons. Muons are known to have a very short half-life, 
measured in the laboratory to be 1.56 microseconds. Given the speed at which 
they travel and the distance they travel through the atmosphere, the vast 
majority of muons would decay before they hit the ground.

The Rossi–Hall experiment involved measuring the number of muons col-
liding with a detector on top of a tall mountain and comparing this number 
with how many muons were detected at a lower point. They found that far 
more muons survived the journey through the atmosphere than would be pre-
dicted without time dilation. The muons were travelling so fast relative to Earth 
that the muons decayed at a much slower rate for observers on Earth than they 
would at rest in the laboratory. The journey between the detectors took about 
6.5  microseconds according to Earth-based clocks, but the muons decayed 
as though only 0.7  microseconds had passed. Due to length contraction, the 
muons did not see the tall mountain but, rather, a small hill. Rossi and Hall 
were not surprised that the muons survived the journey at all. 

Muons are a measurable 
example of special relativistic 
effects.

2000 m

(a) The number of muons decaying between
 detector 1 and detector 2 implies that
 less time has passed for the muons than 
 Earth-based clocks suggest.

(b) The muons see the distance 
 between detectors greatly 
 contracted.

detector 1

detector 1

detector 2 detector 2

muons

muons

Sample problem 3.11

Use the description of the Rossi–Hall experiment above to answer the following 
questions.
(a) What is the proper time for the half-life of muons?
(b) What is the value of gamma as determined from the journey times from 

the different reference frames?
(c) How fast were the muons travelling though the atmosphere according to 

the value for gamma?
(d) Calculate the half-life of the muons from the reference frame of the Earth.

(a) The proper time for the half-life is in the reference frame of the muon and 
is 1.56 microseconds.

(b) t t

t
t

6.5
0.7

9.29

0

0

γ

γ

=

= = =

(c)
 

v

v

1

1
c

c 1
1

c 1
1

9.29
0.994c

2

2

2 2

γ

γ

=
−

= − = − =

(d) t = t0γ
 t = 1.56 × 106 × 9.29 = 14 µs

Solution:



97CHAPTER 3 Special relativity

Revision question 3.11

Use the description of the Rossi–Hall experiment above to answer the following 
questions.
(a) Use the travel time from the Earth reference frame and the speed of the 

muons to calculate the height of the mountain.
(b) Use the travel time of the muons to determine how high the mountain 

appeared to the muons.

The most famous equation: E = mc2

The result of special relativity that people are most familiar with is the equation 
E = mc2. In fact, it is probably the most well known equation of all. This for-
mula expresses an equivalence of mass and energy. If we do work, ΔE, on an 
object, that is we increase its energy, its mass will increase. Usually, however, 
we do not notice this increase in mass because of the factor c2 = 9 × 1016  m2  s−2. 
According to ΔE = Δmc2, it would take 9 × 1016  J of energy to increase the mass 
by 1  kg. This is similar to the amount of electrical energy produced in Victoria 
every year. Conversely, if we could convert every gram of a 1  kg mass into elec-
tricity, we would supply Victoria’s electricity needs for a year. Nuclear fission 
reactors produce electricity from the small loss of mass that occurs when large 
nuclei such those of uranium-235 undergo fission. The Sun and other stars 
generate their energy by losing mass to nuclear fusion.

A simplified derivation of this equation can help us gain a sense of the 
physics involved. Consider a box suspended in space, with no external forces 
acting on it, as shown in the figure below. Maxwell found that electromagnetic 

radiation carries momentum p
E
c

=  where E is the energy transmitted and c is 

the speed of light. In the context of photons, each photon carries a momentum 

p
E
c

= . As a result, light exerts pressure on surfaces. This effect can nudge satellites

out of orbit over time.

Einstein’s box suspended in 
space

momentum = − mboxv = 0v =

A B

A B

A B

centre of
mass

centre of
mass

centre
of mass

momentum = 0

(a) The box begins at rest.

momentum = 0

(b) A photon is emitted from end A.

(c) The box has moved a distance x
 to the left.

x

photon

velocity = c
E

mboxc
E
c
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In (a), the box begins at rest. The total momentum is zero and its centre of 
mass is in the centre.

In (b), a photon of energy E is emitted from end A, carrying momentum 
with it. To conserve momentum, the box moves in the direction opposite to the 
movement of the photon.

pphoton + pbox = 0

⇒ − =E
m v

c
0box

where 
mbox = the mass of the box
v = the velocity of the box.

Rearranging gives us the velocity of the box in the leftward direction, =v
E

m cbox
,  

a very small number!
In (c), after time Δt, the light pulse strikes the other end of the box and is 

absorbed. The momentum of the photon is also absorbed into the box, bringing 
the box to a stop. In this process, the box has moved a distance x where:

x = vΔt.

Substituting =v
E

m cbox
 from (b) gives

= ∆
x

E t
m cbox

.

As v is very small (almost non-existent), we can assume that the photon travels 

the full length of the box and put t
L
c

∆ = . Susbtituting this into = ∆
x

E t
m cbox

 gives: 

=x
EL

m cbox
2 .

or =E
xm

L
cbox

2
.

There are no external forces acting on the box, so the position of the centre 
of mass must remain unchanged (see the dotted line in the diagram). The box 
moved to the left as a result of the transfer of the energy of the photon to the 
right. Therefore, the transfer of the photon must be the equivalent of a transfer 

of mass. If we can show that 
xm

L
box  is the same as the mass equivalent of the 

transferred energy, we have our answer. To show this, we will pay attention to 
the shift in the box relative to the centre of mass of the system. 

The centre of mass is the point where the box would balance if suspended. 
This can be determined by balancing moments — the mass times the distance 
from a reference point. We choose the centre of the box as the reference point 
to ensure that the distance x is in our calculations. The moment for the box is 
mboxx anticlockwise, because the mass of the box can be considered to be acting 
through a point at distance x to the left of the reference point. The photon’s 

equivalent mass is acting at distance 
L
2

 to the right of the reference point, so 

its moment is m
L
2

 clockwise. However, this moment was acting on the other end 

of the box before the photon was emitted, so we can consider its absence from 
that end of the box as an equal moment in the same direction. We then have:

      
= +m x m

L
m

L
2 2box

or =m
m x

L
box  as required.
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Substitute this into =E
xm

L
cbox

2
 and we have E = mc2.

Balancing Einstein’s box

Photon mass–energy
missing = −m

Photon mass–energy
gained = m

Centre of mass of the
box after the photon
is reabsorbed

When x is chosen correctly,
the box will balance here.

x

Centre of mass of the box before the
photon is emitted. Choose this as the
reference point; mbox acts through here.

In other words, when the photon carried energy to the other end of the box, 
it had the same effect as if it had carried mass. In fact, Einstein concluded that 
energy and mass are equivalent. If we say that some energy has passed from 
one end of the box to the other, we are equally justified in saying that mass has 
passed as well. Note the distinction: the photon carries an amount of energy that 
is equivalent to an amount of mass, but the photon itself does not have mass.

One implication of this is that the measurement of mass depends on the  
relative motion of the observer. The kinetic energy of a body depends 
on the inertial reference frame from which it is measured. The faster the 
motion, the greater the kinetic energy. So kinetic energy is relative, and so is 
mass! Energy is equivalent to mass, so the mass of an object increases as its 
velocity relative to an observer increases. 

The mass of an object that is in the same inertial frame as the observer is called 
its rest mass (m0). When measured from other reference frames, the mass is given 
by m = m0γ . The derivation of this is complex, so it will not be addressed here.

Sample problem 3.12

Use m = m0γ  to show that it is not possible for a mass to exceed the speed of 
light.

If v = c, γ  becomes infinitely large. As m = m0γ , an object travelling at c would 
have infinite mass. Speeds larger than c would produce a negative under the 
square root sign, so these speeds are not possible.

Revision question 3.12

The Earth (m = 6 × 1024  kg) moves around the Sun at close to 30  000  m  s−1. From 
the Sun’s frame of reference, how much additional mass does the Earth have?

Sample problem 3.13

Calculate the mass increase of a proton that is accelerated from rest using 
11  GeV of energy, an energy that can be achieved in particle accelerators.

 ∆ =
= × × ×
= ×

−

−

E 11 GeV

11 10 1.6 10 J

1.76 10 J

9 19

9

The mass of an object measured at 
rest is called its rest mass.

Solution:

Solution:
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m
E

c
1.76 10 J

(3 10 m s )

1.96 10 kg

2

9

8 1 2

26

∆ = ∆

= ×
×

= ×

−

−

−

Note that the rest mass of a proton is 1.67 × 10−27  kg, so the accelerated proton 
behaves as though its mass is nearly 13 times its rest mass.

Sample problem 3.14

In Newtonian physics, if we gave a proton 11  GeV of kinetic energy, what would 
be its speed?

 
E mv

v
E

m

1
2

2

2 11 10 1.6 10
1.67 10

1.45 10 m s

2

9 19

27

9 1

=

=

= × × × ×
×

= ×

−

−

−

This speed is not possible as the maximum speed attainable is 3 × 108  m  s−1.

The solution to sample problem 3.14 is well in excess of the speed of light, 
and is an example of the limitations of Newtonian physics. In relativity, when 
more energy is given to a particle that is approaching the speed of light, the 
energy causes a large change in mass and a small change in speed. By doing 
work on the particle, the particle gains inertia, so the increase in energy has 
an ever-decreasing effect on the speed. The speed cannot increase beyond the 
speed of light, no matter how much energy the particle is given.

In particle accelerators, where particles are accelerated to near the speed of 
light, every tiny increase in the speed of the particles requires huge amounts of 
energy. Physicists working in this field rely on ever-higher energies to make new 
discoveries. This costs huge amounts of money. Nonetheless, a number of accel-
erators have been built that are used by scientists from around the world. This area 
of research is often called high-energy physics. At these high energies,  Newtonian 
mechanics is hopelessly inadequate and Einstein’s relativity is essential.

Particle accelerators such as 
the Australian Synchrotron 
in Melbourne accelerate 
subatomic particles to near-
light speeds, where special 
relativity is essential for 
understanding the behaviour 
of the particles. Electrons in 
the Australian Synchrotron 
have kinetic energies up to 
3  GeV.

Solution:
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Kinetic energy in special relativity
This equivalence of mass and energy has resulted in the term mass–energy. The 
mass–energy of any object is given by E = mc2. With mass–energy, a moving 
particle has kinetic energy and rest energy. Rest energy is the energy equiva-
lent of the mass at rest given by E = mc2. 

So we have:
E = Ek + Erest .

Substituting for E and Erest, we have
mc2 = Ek + m0c2.

Rearranging and substituting,

 

E m m

m m

m

c c

c c

( 1) c .

k
2

0
2

0
2

0
2

0
2

γ
γ

= −
= −
= −

This is the expression we must use for kinetic energy when dealing with high 
speeds, particularly those exceeding 10% of the speed of light.

Sample problem 3.15

Calculate the kinetic energy of a 10  000  kg spacecraft travelling at 0.5c and 
compare this with the kinetic energy that you would calculate using classical 

physics (that is, E mv
1
2k

2= ). 

Using special relativity,

 

E m( 1) c

1

1 0.5
1 10 000 (3 10 )

1.39 10 J.

k 0
2

2
8 2

20

γ= −

=
−

−
⎛

⎝
⎜

⎞

⎠
⎟ × × ×

= ×
Using classical physics,

 

E mv
1
2

1
2

10 000 (0.5 3 10 )

1.13 10 J.

k
2

8 2

20

=

= × × × ×

= ×

The kinetic energy is 
1.39
1.13

1.23=  times the value predicted by classical physics. 

Revision question 3.13

A particle accelerator is designed to give electrons 10  GeV of kinetic energy. 
How fast can it make electrons travel?

Mass conversion in the Sun
In Unit 1 we considered the generation of energy in the core of the Sun and 
other stars. One of the consequences of Einstein’s great contribution to our 
understanding of relativity is that we understand now a great deal about how 
energy is generated by the Sun. At the centre of it all is the equation E = mc2. 
The Sun continuously converts mass–energy stored as mass into radiant light 
and heat. Each second the Sun radiates enough energy to meet current human 
requirements for billions of years. It takes the energy generated in the core 

Unit 3 Mass–energy
Concept summary 
and practice 
questions

AOS 3

Topic 5

Concept 8

As mass and energy are equivalent, 
they can be described as a single 
concept, mass–energy. The mass–
energy of an object is given by 
E = mc 2.

Solution:
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about 100  000 years to reach the surface. Even if the fusion in the Sun stopped 
today, it would take tens of thousands of years before there was a significant 
impact on Earth. 

The Sun is a ball made up mostly of hydrogen plasma and some ionised 
atoms of lighter elements. The temperatures in the Sun ensure that virtually 
all of the atoms are ionised. The composition of the Sun is shown in this table.

TABLE 3.1 The composition of the Sun

Element
Percentage of total number of 

nuclei in the Sun
Percentage of total mass of 

the Sun

Hydrogen 91.2 71.0

Helium 8.7 27.1

Oxygen 0.078 0.97

Carbon 0.043 0.40

Nitrogen 0.0088 0.096

Silicon 0.0045 0.099

Magnesium 0.0038 0.076

Neon 0.0035 0.058

Iron 0.030 0.014

Sulfur 0.015 0.040

At this stage of the Sun’s life cycle, it is ionised hydrogen atoms (i.e. protons) 
that provide the energy. The abundance of protons and the temperatures and 
pressures in the core of the Sun are sufficient to fuse hydrogen, but not heavier 
nuclei. The energies of the protons in the Sun have a wide distribution from 
cool, slow protons to extremely hot, fast protons. It is only the most energetic 
protons, about one in a hundred billion, that have the energy required to over-
come the electrostatic repulsion and undergo fusion. The Sun is in a very stable 
phase of fusing hydrogen that is expected to last for billions of years to come. 

Fusion in the Sun occurs mainly through the following process:

H + H H + + neutrino

H + H He + gamma photon

He + He He + 2 H.

1
1

1
1

1
2

1
0

1
2

1
1

2
3

2
3

2
3

2
4

1
1

→ β
→

→

+

which can be summed up by the following equation:

→ β+4 H He + 2 + 2 neutrinos + 2 gamma photons.1
1

2
4

1
0

The energy is released mainly through the gamma photons and the annihi-
lation of the positrons when they meet free electrons in the Sun. The net result 
is an enormous release of energy and a corresponding loss of mass. The mass 
loss has been measured to be 4.4  Tg (4.4 × 109  kg) per second. As the mass of 
the Sun is around 2.0 × 1030  kg, even at this incredible rate, there is plenty of 
hydrogen to sustain it for about twice its age of four and a half billion years.

Sample problem 3.16

A nucleus of hydrogen-2 made of one proton and one neutron has a smaller 
mass than the total of an individual proton and an individual neutron. Account 
for this mass difference.

The Sun’s energy comes from 
nuclear fusion converting 
mass into energy.
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The mass of the nucleus is different to the mass of the individual particles, but 
when the binding energy of the hydrogen-2 nucleus is included, we find that 
the mass–energy of both is the same. The separate particles have their mass 
and zero potential energy. The particles bound in the nucleus have a reduced 
mass and the binding energy of the nucleus. (The binding energy is the energy 
required to separate the particles. It is released as a combination of increased 
kinetic energy of the particles and gamma rays.)

Sample problem 3.17

What is the power output of the Sun?

 

E m

P
E
t

c

4.4 10 (3.0 10 ) J

= 4.0 10 J

4.0 10 W

2

9 8 2

26

26

=
= × × ×

×

=

= ×

The mass loss of 4.4 × 109  kg s−1 equates to a power output of 4.0 × 1026  W.

Solution:

Solution:
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Chapter review
Unit 3 Einstein’s relativity

Sit Topic test

AOS 3

Topic 5

Summary
 ■ There is no frame of reference that is at absolute 

rest. Velocity is always relative to a chosen reference 
frame.

 ■ Classical physics is the physics established by 
 Galileo, Newton and other scientists before the twen-
tieth century. It does not include twentieth-century 
developments in physics, such as special relativity 
and quantum mechanics. 

 ■ In classical physics, velocity is relative but time, dis-
tance and mass measurements are invariant — they 
are the same for all observers. Classical physics pro-
vides a good approximation at low velocities, but it 
does not provide accurate values as relative speeds 
approach the speed of light.

 ■ In special relativity, velocities of masses are still rela-
tive but the speed of light is invariant. As a result, it 
is recognised that the measurement of time intervals, 
lengths and masses is relative to the reference frame 
of the observer.

 ■ Einstein’s two postulates of special relativity are: 
 – the laws of physics are the same in all inertial 

(non-accelerated) frames of reference
 – the speed of light has a constant value for all 

observers regardless of their motion or the motion 
of the source.

 ■ Proper time is the time interval between two events 
in a reference frame where the two events occur at 
the same point in space, that is, the reference frame 
in which the clock is stationary.

 ■ Proper length is the length that is measured in the 
frame of reference in which objects are at rest.

 ■ In reference frames in motion relative to the 
observer, time is dilated according to t = t0γ , where

v

1

1
c

2

2

γ =
−

.

 ■ In reference frames in motion relative to the observer, 
length is contracted along the line of motion according 

to L
L0

γ
= .

 ■ In reference frames in motion relative to the observer, 
mass increases according to m = m0γ .

 ■ An example of where the effects of special relativity 
can be observed is muons formed in the upper 
atmosphere. They travel to Earth at nearly the speed 
of light, so that even though most would decay in the 
time it takes them to reach the surface according to 

classical physics, many survive the journey as they 
see the distance contracted. From the perspective of 
the Earth, the time is dilated so that the muons have 
time to reach the surface. 

 ■ Kinetic energy is given by the formula Ek = (γ − 1)m0c2.
 ■ E = mc2 expresses the equivalence of mass and energy.
 ■ Fusion is the source of the Sun’s energy. The Sun 

is constantly losing mass as it radiates energy in 
accordance with mass–energy equivalence.

Questions
The principle of relativity
 1. According to Maxwell, who would see light 

travelling the fastest?
A. Someone moving towards a light source that is 

stationary in the aether
B. Someone who is stationary in the aether with the 

light source moving away
C. Someone who is stationary in the aether with the 

light source moving towards her
D. Someone who is moving away from a light 

source that is stationary in the aether
 2. What is a frame of reference?
 3. What do physicists mean when they say that 

velocity is relative?
 4. What is the difference between an inertial and a 

non-inertial reference frame?
 5. How can you determine whether your car is 

accelerating or moving with constant velocity?
 6. Two cars drive in opposite directions along a 

suburban street at 50  km  h−1. What is the velocity of 
one car relative to the other?

 7. Explain, using the concept of velocity, why head-on 
collisions are particularly dangerous. Use an example.

 8. Earth varies from motion in a straight line by less 
than 1° each day due to its motion around the Sun.
(a) Explain, with the help of the principle of 

relativity, why we do not feel Earth moving, 
even though it is travelling around the Sun at 
great speed.

(b) What are the other motions Earth undergoes 
that we cannot feel?

(c) Earth is not an inertial reference frame. Explain 
why we often refer to it as though it is.

 9. A car accelerates from 0 to 100  km  h−1 in 10  s.
(a) What is its acceleration relative to the road?
(b) What is its acceleration relative to a car travelling 

at 100  km  h−1 in the opposite direction?
(c) Would you describe the acceleration as 

absolute, relative, invariant or arbitrary?
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 10. (a)   If Earth is moving at 100  km  s−1 relative to the 
supposed aether, what speed would Michelson 
have measured for light emitted in the same 
direction that Earth is travelling?

(b) What speed would Michelson have expected 
given the aether theory? (Take the speed of 
light to be 2.9979 × 108  m  s−1.)

 11. (a)   What are Einstein’s two postulates of special 
relativity?

(b)  What is in these postulates that was not 
present in previous physics?

 12. What place did the luminiferous aether take in 
Einstein’s theory?

 13. (a)  Why did Newton’s laws seem correct for so long?
(b) Why do we often still use Newton’s laws today?

 14. Why is Einstein’s second postulate surprising? 
Give an example to show why Newtonian 
physicists would think it wrong.

 15. A star emits light at speed c. A second star is 
hurtling towards it with speed 0.3c. What is the 
speed of the light when it hits the second star 
relative to this second star?

 16. Explain how Einstein’s second postulate makes 
sense of the results of the Michelson–Morley 
experiment.

Special relativistic effects on length and 
distance
 17. What is time dilation? In your explanation, give an 

example of where time dilation would occur.
 18. If a box was moving away from you at nearly 

light speed, which dimensions of the box would 
undergo length contraction from your perspective: 
width, height or depth?

   19. Which clock runs slow: yours or one in motion 
rela tive to you?

 20. You observe that an astronaut moving very quickly 
away from you ages at a slower rate than you. The 
astronaut views you as ageing faster than she ages. 
True or false? Explain.

 21. The twins paradox shows that less time passes 
for the travelling twin. Does this also mean that 
the twin will return shortened due to length 
contraction? Explain.

 22. Draw diagrams of a light clock in motion and 
at rest to explain why time dilation occurs for 
moving clocks.

  23. Explain why time dilation must occur for all 
clocks, not just the light clock.

   24. Explain the difference between to and t in the time 
dilation formula.

  25. Two spacecraft pass each other with a relative 
speed of 0.3c.
(a) Calculate γ .
(b) A drummer pounds a drum at 100 beats per 

minute on one of the spacecraft. How many 

beats per minute would those on the other 
spacecraft measure as a result of time dilation?

 26. An alien spacecraft speeds through the solar 
system at 0.8c.
(a) What is the effect of its speed on the length of 

the spacecraft from the perspective of an alien 
on board?

(b) What is the effect of its speed on the length of 
the spacecraft from the perspective of the Sun?

(c) At what speed does light from the Sun reach it?
 27. A high-energy physicist detects a particle in a 

particle accelerator that has a half-life of 20 s 
when travelling at 0.99c.
(a) Calculate the particle’s half-life in its rest frame.
(b) The detector is 5  m long. How long would it be 

in the rest frame of the particle?
 28. It takes 5  min for an astronaut to eat his breakfast, 

according to the clock on his spacecraft. The clock 
on a passing spacecraft records that 8 min passed 
while he ate his breakfast.
(a) Which time is proper time?
(b) What is the relative speed of the two spacecraft?

 29. The nearest star, apart from the Sun, is 4.2 light-
years distant.
(a) How far is it to that star according to 

astronauts in a spacecraft travelling at 0.7c?
(b) How long would it take to get there in this 

spacecraft?
(c) How long will the journey take, based on 

measurements from Earth? (Assume that 
Earth is stationary relative to the star.)

 30. A spacecraft (Lo = 80  m) travels past a space 
station at speed 0.7c. Its radio receiver is on the tip 
of its nose. The space station sends a radio signal 
the instant the tail of the spacecraft passes the 
space station.
(a) What is the length of the spacecraft in the 

reference frame of the space station?
(b) How far from the space station is the nose of 

the spacecraft when it receives the radio signal 
from the reference frame of the space station?

(c) What is the time taken for the radio signal to 
reach the nose of the spacecraft, according to 
those on the space station?

(d) What is the time taken for the radio signal 
to reach the nose, according to those on the 
spacecraft?

 31. An astronaut on a space walk sees a spacecraft 
passing at 0.9c. The spacecraft has a proper length of 
100  m. What is the length of the spacecraft L due to 
length contraction according to the astronaut?

 32. Explain why muons reach the surface of the Earth 
in greater numbers than would be predicted by 
classical physics given their speed, their half-lives 
and the distance they need to travel through the 
atmosphere.
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 33. A muon forms 30  km above the Earth’s surface 
and travels straight down at 0.98c. From its frame 
of reference, what is the distance it has to travel 
through the atmosphere?

 34. The proper time for the half-life of a muon is 
1.56 microseconds. If the muon moves at 0.98c 
relative to an observer, what does the observer 
measure its half-life as?

 35. Explain how muons produced by cosmic rays 
became an early confirmation of special relativity.

Mass–energy and relativity
 36. Use your knowledge of relativity to argue that 

matter cannot travel at the speed of light.
 37. How much energy would be required to accelerate 

1000  kg to:
(a) 0.1c
(b) 0.5c
(c) 0.8c
(d) 0.9c?

 38. Sketch a graph of energy versus speed using your 
answers to the previous question.

   39. Travelling at near light speed would enable 
astronauts to cover enormous distances. Explain 
the difficulties in terms of energy of achieving 
space travel at near light speed.

 40. Which of the following would be a consequence 
of the relativistic mass increase of a person 
travelling past you at near light speed?
A. They would appear physically larger.
B. They would weigh more on a balance.
C. They would require more force to accelerate.

E = mc2

 41. Explain in words what E = mc2 tells us about 
energy and mass.

 42. An astronaut in a spacecraft moves past Earth at 
0.8c and measures his mass. (He has no weight in 
his inertial reference frame.) According to him, his 
mass is 70  kg.

(a) What is his mass according to an observer on 
Earth?

(b) How much energy was required to give him 
the extra mass?

 43. Calculate the rest energy of Earth, which has a rest 
mass of 6.0 × 1024  kg.

 44. Consider Earth to be a mass moving at 30  km  s−1 
relative to a stationary observer. Given that the rest 
mass of Earth is 5.98 × 1024  kg, what would be the 
difference between this rest mass and the mass 
from the point of view of the stationary observer?

 45. Calculate the kinetic energy of a 10  000  kg asteroid 
travelling at 0.6c.

 46. Calculate the speed of a 10  kg meteorite that has 
5.0 × 108  J of kinetic energy.

 47. If a 250  g apple could be converted into electricity 
with 100% efficiency, how many joules of 
electricity would be produced?

 48. Much of Victoria’s electricity is produced by 
burning coal. What can you say about the mass of 
the coal and its chemical combustion products as 
a result of burning it?

   49. What would have greater rest mass, the Moon in 
orbit about Earth, or the Moon separated from 
Earth?

 50. What is happening to the mass of the Sun over 
time? Why?

 51. Part of the fusion process in the Sun involves the 
fusion of two protons into a deuteron. This results 
in the release of 0.42  MeV of energy. What is the 
mass equivalent of this energy release?

 52. Where in the fusion processes in the Sun is 
electromagnetic radiation produced that is later 
radiated by the Sun?

 53. (a)  Write the most common sequence of nuclear 
fusion reactions in the Sun.

(b) How does the total mass of the particles 
on the left-hand side of the arrow in each 
equation compare with the total mass of the 
particles on the right-hand side?



Understanding gravitational forces has allowed 
us to put satellites in orbit around the Earth.

REMEMBER

Before beginning this chapter, you should be able to:
 ■ model forces as vectors acting at the point of application 
(with magnitude and direction), labelling these forces 
using the convention ‘force on A by B’ or Fon A by B 

 ■ model the force due to gravity, Fg, as the force of gravity 
acting at the centre of mass of a body

 ■ apply Newton’s three laws of motion to a body on which 
forces act: a

F
m
net= , Fon A by B = −Fon B by A 

 ■ analyse uniform circular motion in a horizontal plane
 ■ resolve vectors into components
 ■ apply the energy conservation model to energy transfers 
and transformations.

KEY IDEAS

After completing this chapter, you should be able to:
 ■ apply Newton’s Law of Universal Gravitation to the motion 
of planets and satellites

 ■ describe gravitation using a field model
 ■ describe the gravitational field around a point mass in 
terms of its direction and shape

 ■ calculate the strength of the gravitational field at a point a 
distance, r, from a point mass

 ■ analyse the motion of planets and satellites by modelling 
their orbits as uniform circular orbital motion

 ■ describe potential energy changes of an object moving in 
the gravitational field of a point mass

 ■ analyse energy transformations as objects change 
position in a changing gravitational field, using area under 
a force–distance graph and area under a field–distance 
graph multiplied by mass

 ■ apply the concepts of force due to gravity, Fg, and normal 
reaction force, FN, to satellites in orbit.

4 Gravitation

CHAPTER
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Explaining the solar system
Isaac Newton (1642–1726) published his Law of Universal Gravitation in 1687. 
This law provided a mathematical and physical explanation for several impor-
tant observations about the movement of planets in the solar system that had 
been made over the previous two centuries.

In 1542, Nicolas Copernicus (1473–1543) published ‘On the Revolution of 
the Heavenly Orbs’, outlining an explanation for the observations of planetary 
motion with the Sun at the centre. In his explanation, the planets moved in 
circular orbits about the Sun. Copernicus’s model became increasingly pre-
ferred over the geocentric model of Ptolemy because it made astronomical 
and astrological calculations easier. The publication had a significant scientific, 
social and political impact during the latter part of the 16th century.

Galileo Galilei (1564–1642) was a strong advocate for the view that the Coper-
nican model was more than ‘a set of mathematical contrivances, merely to pro-
vide a correct basis for calculation’ and instead represented physical reality. 
(This had also been Copernicus’s view, but he could not express this in print.) 
Galileo thought that astronomy could now ask questions about the structure, 
fabric and operation of the heavens, but as with so many of his scientific inter-
ests, Galileo did not pursue these questions further.

Johannes Kepler (1571–1630) decided his purpose in life was to reveal the 
fundamental coherence of a planetary system with the sun as its centre. In 
1600–1601 he was working an assistant to Tycho Brahe (1546–1601), a Danish 
astronomer who had been compiling very precise measurements of the 
planets’ positions for over twenty years. Brahe’s data was so accurate that they 

are still valid today. Without the aid of a telescope, he was 
able to measure angles to an accuracy of half a minute of 
arc (for example 23°34′ ± 0.5′).

Kepler was seeking to find patterns and relationships 
between motion of the various planets. He used the data 
to calculate the positions of the planets as they would be 
observed by someone outside the solar system, rather 
than from the revolving platform of the Earth. Initially he 
was looking for circular orbits, but Brahe’s precise data 
did not fit such orbits. Eventually he tried other shapes, 
until in 1604 he formulated what is known as Kepler’s 
First Law:

Each planet moves, not in a circle, but in an ellipse, with the 
sun, off centre, at a focus.

An ellipse is like a stretched circle. The shape can be 
drawn by placing two pins on the page several cm apart, 
with a loose piece of string tied between the pins. If a 
pencil is placed against the string to keep it tight and then 
the pencil is moved around the page, the drawn shape is 
an ellipse with a focus at each of the pins. The closer the 
two foci, the more like a circle the ellipse becomes.

Evidence of elliptical orbits
The equinoxes are the two days in the year when the sun is directly above the 
equator and the durations of night and day are equal. They occur when the line 
drawn from the Sun to the Earth is at right angles to the Earth’s orbit. Because 
the Earth’s orbit is an ellipse, when the Sun is off centre at one of the two foci, 
these two points are not directly opposite each other. This means the time for 
the Earth to go from the March equinox to the September equinox is longer by a 
few days than the time to go from the September equinox to the March equinox.

Drawing an ellipse

Sun
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Sun

September
equinox

March
equinox

 
There was much speculation in Newton’s time that gravitational attraction 

might vary inversely with the square of the distance, but it was Newton who 
was able to show mathematically, using a geometric proof, that the Earth’s 
elliptical orbit means that the inverse square law applies to the attraction 
between the Sun and the Earth.

Kepler’s Second Law
Kepler also looked at the speed of the planets in their orbits. His analysis of the 
data showed that speeds of the planets were not constant. The planets were 
slower when they were further away from the sun and faster when closer. He 
also found that their angular speed, the number of degrees a line from the sun 
to planet sweeps through every day, was not constant. Both results reinforced 
his first law. However, he did find in 1609 that the planets sweep out equal 
areas with time.

Kepler’s Second Law: The linear speed and angular speed of a planet are not 
constant, but the areal speed of each planet is constant. That is, a line joining 
the sun to a planet sweeps out equal areas in equal times.

Sun

Planet
One month

One month

 
Newton was able to show mathematically that a constant areal velocity 

meant that the force acting on a planet must always act along the line joining 
the planet to the Sun.

Kepler’s Third Law
Kepler was keen to find a mathematical relationship between the period of a 
planet’s orbit around the sun and its average radius that gave the same result 
for each planet. He tried numerous possibilities and eventually in 1619 he 
found a relationship that fitted the data.

Kepler’s Third Law: For all planets, the cube of the average radius is 

proportional to the square of the orbital period; that is, R
T

3

2
 is a constant for all 

planets going around the sun.

Location of the two equinoxes 
in the Earth’s orbit

Look up the dates of the March 
and September equinoxes 
and determine the two times 
between them.

eLesson
Kepler’s laws
eles-2557

Kepler’s Second Law
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Kepler was also able to show that the relationship held for the orbits of the 
moons of Jupiter.

Kepler had constructed as detailed a description of the solar system as was 
possible without a mechanism to explain the motion of the planets, although 
he did understand gravity as a reciprocal attraction. Kepler wrote, “Gravity is 
the mutual tendency between bodies towards unity or contact (of which the 
magnetic force also is), so that the Earth draws a stone much more than the 
stone draws the Earth . . . ”

TABLE 4.1 The solar system: some useful data

Body Mass (kg)
Radius of 
body (m)

Mean radius 
of orbit (m)

Period of 
revolution (s)

Sun 1.99 × 1030 6.96 × 108 Not applicable Not applicable

Earth 5.97 × 1024

7.35 × 1022
6.37 × 106

1.74 × 106
1.50 × 1011

3.84 × 108
3.16 × 107

2.36 × 106

Mercury 3.30 × 1023 2.44 × 106 5.79 × 1010 7.60 × 106

Venus 4.87 × 1024 6.05 × 106 1.08 × 1011 1.94 × 107

Mars 6.42 × 1023 3.40 × 106 2.28 × 1011 5.94 × 107

Jupiter 1.90 × 1027 7.15 × 107 7.78 × 1011 3.74 × 108

Saturn 5.68 × 1026 6.03 × 107 1.43 × 1012 9.29 × 108

Uranus 8.68 × 1025 2.59 × 107 2.87 × 1012 2.64 × 109

Neptune 1.02 × 1026 2.48 × 107 4.50 × 1012 5.17 × 109

Pluto* 1.46 × 1022 1.18 × 106 5.90 × 1012 7.82 × 109

*Pluto is no longer classified as a planet. Scientists have recently hypothesised that a ninth 
planet may exist, but it has not yet been directly observed.

Revision question 4.1

Use the data in table 4.1 to calculate the value of 
R
T

3

2  for each of the planets in 

the solar system and therefore confirm Kepler’s Third Law.

Newton’s Law of Universal Gravitation
Newton combined his deductions from Kepler’s Laws with his own Laws of 
Motion to develop an expression for a law of universal gravitation.

From Kepler’s first law, Newton had determined that the force on a planet 
was inversely proportional to the square of the distance.

∝F
R
1

on planet by Sun 2

Using his second law of motion, Fnet = ma, Newton reasoned that the force 
Fon planet by Sun depended on the mass of the planet. By using his third law of 
motion, Fon planet by Sun = −Fon Sun by planet, he reasoned that the force Fon Sun by planet 
depended on the mass of the sun.

Combining these two statements produces:

Gravitational force between the sun and the planet ∝ ×
R

Mass
Mass

.Sun
planet
2

In general,

=F
m m

R

G 1 2
2

where G is the universal gravitational constant and m1 and m2 are the masses 
of any two objects.

Unit 3 Newton’s Law 
of Universal 
Gravitation
Concept summary 
and practice 
questions
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The value of G could not be determined at the time because the mass of the 
Earth was not known. It took another 130 years before Henry Cavendish was 
able to measure the gravitational attraction between two known masses and 
calculate the value of G.

The value of G is 6.674 × 10−11  N  m2  kg−2. Alternatively, replacing newtons 
with kg m s−2, G = 6.674 × 10−11  m3  kg−1  s−2.

The value of G is very small, which indicates that gravitation is quite a weak 
force. A large quantity of mass is need to produce a gravitational effect that is 
easily noticeable.

Sample problem 4.1

Calculate the force due to gravity of:
(a) Earth on a 70  kg person standing on the equator
(b) a 70  kg person standing on the equator on Earth.
(a) mEarth = 5.98 × 1024  kg, mperson = 70  kg, radiusEarth = 6.38 × 106  m,

G = 6.67 × 10−11  N  m2  kg−2

=

= × × × ×
×

=

− −

F
m m

r

G

6.67 10 N m kg 5.98 10 kg 70 kg
(6.38 10 m)

686 N towards the centre of Earth

Earth person
2

11 2 2 24

6 2

(b) Newton’s Third Law of Motion states that if one object exerts a force on 
another object, then the other object exerts an equal and opposite force on 
the first object. In this situation, if Earth is exerting a force of 686  N down-
wards on the person, then the person is exerting a 686  N force upwards on 
Earth! The same result could be calculated with the formula used in part (a).

Revision question 4.2

Use the data in table 4.1 to calculate the force due to gravity by:
(a) the Earth on the Moon
(b) the Moon on Earth.

The falling apple
Newton published his law of universal gravitation in 1687, in his famous book 
titled Philosophiae Naturalis Principia Mathematica. In this book he included 
an anecdote about observing an apple falling from a tree. There is no record 
of such an event in his earlier papers, so the story may just have served an 
explanatory purpose. Nevertheless, the story is instructive.

Newton said he observed that the falling apple had been pulled from the tree 
by the attractive force of the Earth, which had acted across the space between 
the Earth’s surface and the apple, that is, ‘action at a distance’. He speculated that 
the effect of the Earth’s pull might reach higher into the atmosphere, possibly 
beyond the atmosphere to the moon. He had previously applied his Laws of 
Motion to circular motion and developed expressions for the inward acceleration,

a
v
R

2
=  and = π

a
R

T
4 2

2
.

The obvious questions that arise from this are: 
1. How does the acceleration of the apple compare to that of the moon?
2. How are these two values related to their respective distances from the 

centre of the Earth?

Solution:
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TABLE 4.2 The relationship between the Earth, an apple and the Moon

Body Apple Moon

Distance to the centre of the Earth (m) 6.38 × 106 3.84 × 108

Period of orbit (s) 2.36 × 106

Acceleration towards the centre of the Earth (m  s−2) 9.8  m  s−2 2.72 × 10−3

With the data from the table, we can make the following calculations:

= ×
×

=

distance of the Moon from the centre of the Earth
distance of the apple from the centre of the Earth

3.84 10
6.38 10
60.1

8

6

=
×

=
−

acceleration of the apple towards the centre of the Earth
acceleration of the Moon towards the centre of the Earth

9.8
2.72 10
3603

3

The value of the second ratio, 3603, is very close to 60.12.
The ratio of the accelerations is the square of the ratio of the distances, but 

note that the Moon is in the numerator for the first ratio, while it is in the 
denominator for the second ratio. Newton used this calculation to show that 
the gravitational force is inversely proportional to the square of the separation 
of the two masses.

Newton’s expression for the centripetal acceleration, a
R

T
4 2

2

π= , was used to 

confirm Kepler’s Third Law, that 
R
T

3

2
 is a constant for all planets or satellites 

orbiting a central body.

π
=

× =

F F

m
R

T

M m

R
4 G

net g

planet

2

2
Sun planet

2

Cancelling mplanet and rearranging gives

π
=R

T
MG
4

3

2
Sun
2

which depends only on the mass of the Sun and thus has the same value for all 
planets orbiting the Sun.

Similarly, the Moon and all other satellites orbiting the Earth will have the 

same value for 
R
T

3

2
, though in this case the value will equal 

MG
4

Earth
2π

.

Sample problem 4.2

Calculate the value of R
T

3

2
 for the Moon using the data in table 4.1 and use that 

value to calculate the mass of the Earth.

Radius of Moon’s orbit, R = 3.84 × 108  m; period, T = 2.36 × 106  s;  
G = 6.67 × 10−11  Nm2  kg−2; mass of Earth, MEarth = ?

= ×
×

= × −

R
T

(3.84 10 m)
(2.36 10 s)

1.02 10 m s

3

2

8 3

6 2

13 3 2

Solution:
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Using 
π

=R
T

MG
4

,
3

2
Earth

2

      
M

R
T

4
G

(3.84 10 m) 4
(2.36 10 s) 6.67 10 N m kg

6.02 10 kg.

Earth

3

2

2

8 3 2

6 2 11 2 2

24

π

π

= ×

= × ×
× × ×

= ×

− −

Revision question 4.3

Find the average of the values of R
T

3

2
 that you calculated in revision question 4.1. 

Use that average value to calculate the mass of the Sun.

Newton’s Law of Universal Gravitation can also be used to calculate the average 
speed of planets around the Sun. This involves using the other expression for 
the centripetal acceleration.

=

× =

F F

m
v
R

M m

R

G
net g

planet

2
Sun planet

2

Cancelling mplanet and rearranging gives

=

=

v
M

R

v
M

R

G

G
.

2 Sun

Sun

Sample problem 4.3

Calculate the average speed of the Earth around the Sun using the values in 
table 4.1.

Radius of Earth’s orbit, R = 1.50 × 1011  m; mass of Sun, MSun = 1.98 × 1030  kg; 
G = 6.67 × 10−11  Nm2  kg−2; speed, v = ?

Using =

= × × ×
×

= ×

− −

−

v
M

R

v

G
,

6.67 10 N m kg 1.98 10 kg
1.50 10 m

2.97 10 m s .

Sun

11 2 2 30

11

4 1

Revision question 4.4

Use the values in table 4.1 to calculate the average speed of the other planets 
around the Sun. Graph the average speed as a function of average orbital radius. 
Does the graph fit your expectation? Are there any outliers in the data? If so, 
suggest an explanation.

Graphing the gravitational force
The gravitational force is an attractive force, whereas the force between electric 
charges can be either attractive or repulsive.

Solution:
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The Earth exerts gravitational force on the Moon.

Distance vector Force vector

Earth

Moon

For the force the Earth exerts on the Moon, there is a distance vector from 
the centre of the Earth to the centre of the Moon, whereas the force vector 
points in the opposite direction, back to the Earth. For this reason, the gravi-
tational force equation should really have a negative sign and the force should 
be graphed under the distance axis. Thus, more correctly,

= −F
m m

R

G
.g

1 2
2

This diagram shows how the Earth’s gravitational force varies with distance.

RE

Fg = −GMm
RE

2

R

g

0

Earth

The straight blue line in the graph shows how the gravitational force by the 
Earth on you would decrease if you were to drill down to the centre of the 
earth. Newton calculated that if you were inside a hollow sphere, the gravi-
tational force from the mass in the shell would cancel out, no matter where 
you were inside the sphere. This means that if you were inside the Earth, only 
the mass in the inner sphere between you and the centre of the Earth would 
exert a gravitational force on you. This force will get smaller the closer to the 
centre you go, and at the centre of the Earth the gravitational force will be zero.

Gravitational fields
Newton’s Law of Universal Gravitation describes the force between two 
masses. However, the solar system has many masses, each attracting each 
other. The sun, the heaviest object in the solar system, determines the orbits of 
all the other masses, but each planet can cause minor variations in the orbital 
paths of the other planets. Precise calculation of the path of a planet or comet 

Interactivity
One giant leap...
int-6611
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becomes a complicated exercise with many gravitational forces needing to be 
considered. 

Physicists after Newton realised it was easier to determine for each point in 
space the total force that would be experienced by a unit mass, that is, 1 kilo-
gram, at that point. This idea slowly developed and in 1849 Michael Faraday, 
in explaining the interactions between electric charges and between magnets, 
formalised the concept, calling it a ‘field’.

A field is more precisely defined as a physical quantity that has a value 
at each point in space. For example, a weather map showing the pressure 
across Australia could be described as a diagram of a pressure field. This is an 
example of a scalar field. In contrast, gravitational, electric and magnetic fields 
are vector fields; they give a value to the strength of the field at each point in 
space, and also a direction for that field at that point. For example, the arrows 
in the diagram of the Earth’s gravitational field show the direction of the field, 
and the density of the lines (how close together the lines are) indicates the 
strength of the field.

Diagram of the Earth’s gravitational field

lines of equal field strength

A value for the strength of the gravitational field around a mass M can 
be determined from the value of the force on a unit mass in the field. If the 
mass m2 in Newton’s Universal Law of Gravitation equation is assigned a 
value of 1 kg, then the force expression will give the strength of the gravi-
tational field.

Gravitational field strength, = −g
M

R
G

2

The unit of gravitational field strength is Newtons per kilogram, N kg−1.

Unit 3 Gravitational 
field strength
Concept summary 
and practice 
questions

AOS 1

Topic 1
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The strength of the gravitational field at the Earth’s surface can be calculated 
using the values for the mass and radius of the Earth from table 4.1:

Gravitational field strength, = − × × ×
×

= −

− −

−

g
6.67 10 N m kg 5.98 10

(6.38 10 )

9.80 N kg .

11 2 2 24

6 2

1

This is the acceleration due to gravity at the Earth’s surface.

Graph of the magnitude of the strength of the Earth’s 
gravitational field
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Revision question 4.5

(a) Use the data in table 4.1 to calculate the gravitational field strength on the 

 surface of the Moon. Show that it is about 1
6

 of the Earth’s gravitational field 
at its surface.

(b) Determine which planet has the largest gravitational field strength at its 
surface. Table 4.1 is also available as a spreadsheet in your eBookPLUS.

At the time Newton developed his Law of Universal Gravitation, he knew it 
did not provide an explanation for how gravity works, that is, how ‘action at a 
distance’ was achieved.

It is inconceivable . . . that Gravity should be innate, inherent and essential to Matter, 
so that one body may act upon another at a distance thro’ a Vacuum, without the 
Mediation of any thing else . . . is to me so great an Absurdity that I believe no Man 
who has in philosophical Matters a competent Faculty of thinking can ever fall 
into it. Gravity must be caused by an Agent acting constantly according to certain 
laws; but whether this Agent be material or immaterial, I have left to the Consider-
ation of my readers. Newton, 1692

The concept of a field now provides an explanation for action at a distance.

Kinetic energy and potential energy in a gravitational field
Consider the following scenarios.
1. On 15 February 2013, an asteroid approached the Earth, gaining speed in 

the Earth’s gravitational field. By the time it reached the atmosphere, it was 
travelling at a speed of 19  km  s−1. With a mass of about 1.2 × 107  kg, its  kinetic 
energy was about 2.2 × 1015  J. It exploded about 30  km above  Chelyabinsk 
in Russia.

Unit 3 Gravitational 
potential energy
Concept summary 
and practice 
questions

AOS 1

Topic 1

Concept 5
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2. Edmund Halley used Newton’s law of gravitation to calculate the effect 
of Jupiter and Saturn on the orbits of comets. He concluded that comet 
 sightings in 1531 and 1607 were sightings of the same comet and that it 
should appear again in 1758. We now call it Halley’s Comet.

  Halley’s Comet orbits the sun every 75.3 years in a very stretched path. 
The closest it gets to the Sun is about 0.6 times the radius of the Earth’s orbit, 
while its furthest distance is 35 times the radius. At its closest approach its 
kinetic energy is 1.6 × 1023  J with a speed of 38  km  s−1, but at its furthest it 
has only 4.5 × 1019  J, travelling at 0.64  km  s−1.

3. Ignoring the initial air resistance, a rock thrown at 11 km s−1 would eventu-
ally escape the effect of the Earth’s gravitational pull, slowing down to zero 
only at an infinite distance away.

In each of these scenarios there are changes in speed and height, and thus 
in kinetic energy and gravitational potential energy. How do we describe these 
changes using Newton’s law of gravitation?

The change in gravitational potential energy can be obtained from the area 
under a force–distance graph. Because gravitation is an attractive force, the 
force–distance graph is below the distance axis and the area under the graph 
has a negative value. 

Change in potential energy needs a reference point or zero point. The Earth’s 
surface is an obvious reference point for objects on or near the Earth; we can 
assume a constant value of 9.8  N  kg−1 for the strength of the gravitational field 
at the Earth’s surface. But out in space, with the gravitational force getting 
weaker with distance, the preferred reference point is at infinity where the 
gravitational force is zero. This means that the gravitational potential energy 
of a mass at a distance R from the Earth is the area under the graph from the 
distance R out to infinity.

Graph of the strength of the Earth’s gravitational force. The gravitational potential 
energy of a mass at distance R from the Earth is equal to the shaded area.

r (m)

F g
 (N

)

R

Let’s look at situation 1, the Chelyabinsk asteroid. When the asteroid is 
some distance from Earth, its kinetic energy is relatively small. As it falls 
towards the Earth, its kinetic energy increases, its gravitational potential 
energy becomes more negative, and the total energy remains the same 
throughout. As the asteroid falls from A to B in the figures on the following 
page, the orange shaded area in the third graph is the gain in kinetic energy. 
That is, 

change in GPE = change in KE.



UNIT 3118

r (m)

F g
 (N

)

A r (m)

F g
 (N

)

B

Change in PE

r (m)

F g
 (N

)

B A

+

At A At B

=

En
er

gy

+

−
GPE GPE

KE

Total

The total energy at B equals the total energy at A.

Sample problem 4.4

A mass of 10  kg falls to the surface of the Earth from an altitude equal to two 
Earth radii. What is the gain in kinetic energy?

There are three methods, two of which give an approximate answer. The accu-
racy of each depends on the care you take.

Method 1

Use this method if the graph has a relatively coarse grid.
Divide the area up into simple geometric shapes such as rectangles and 
triangles.
Calculate the area of each shape using graph-based units.

Solution:
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Total the areas.
Convert the total area to SI units for energy.

Take care in deciding the height of the rectangles or triangles so that their areas 
(approximating the area under the curve) will produce more representative 
results.
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= ×
=
= ×
=

= × ×
=

Area1 (blue) 40 0.5
20 energy units

Area 2 (purple) 10 1.5
15 energy units

Area 3 (orange)
1
2

24 1.5

18 energy units

(Note: The triangle with area 
1
2

30 1.5× ×  would be larger than the orange area, 

so the height of 30 was reduced to a level where the areas matched.)

= × ×

=

Area 4 (yellow)
1
2

53 0.5

13.25 energy units

Total area = 20 + 15 + 18 + 13.25
= 66.25 energy units

= ×
= × ×
= ×

1 energy unit 1 N 1 Earth radius
1 N 6.38 10 m
6.38 10 J

6

6

Therefore, the kinetic energy gained = 66.25 × 6.38 × 106

  = 4.23 × 108  J.
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Method 2

Use this method when the graph has a relatively fine grid.
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Count the number of small squares between the graph and the zero-value 
line or horizontal axis. Tick each one as you count it to avoid counting it 
twice. For partial squares, find two that add together to make one square 
and tick both.
Calculate the area of one small square.
Multiply the area of one small square by the number of small squares.

Number of small squares = 80.5

Area of one small square 4 N 0.2 1 Earth radius

4 N 0.2 6.38 10 m

5.1 10 J

6

6

= × ×
= × × ×
= ×

Therefore, the gain in kinetic energy = 80.5 × 5.1 × 106  J = 4.11 × 108  J.
Method 2 can be very accurate, but it is laborious. 

Method 3
Print out the graph.
Cut out the required shape.
Measure the mass of the shape with a top-loading balance.
Using the mass of a piece of the same paper with known dimensions, calcu-
late the area of the cut-out shape.
Use the scales on the axes of the graph to determine the value for the area 
under the graph.

Revision question 4.6

(a) Use the graph of the gravitational force on the Chelyabinsk asteroid 
(shown on the next page) to show that in moving from an altitude of 
two Earth radii down to an altitude of one Earth radius, it gained 1.25 × 
1014 joules of kinetic energy.

(b) Use the graph to find, to the nearest whole number, approximately how 
much kinetic energy was gained from falling from an altitude of one Earth 
radius to the Earth’s surface. Compare this value with your answer to 
(a) above.
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Gravitational force exerted on the Chelyabinsk asteroid by the Earth
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Using the area under a field graph
The graphs for the 10 kg mass and the Chelyabinsk asteroid have different 
values on the force axis. To find the changes in energy of a rock escaping the 
Earth, a different graph would be needed, because the mass of the rock is dif-
ferent, and thus the gravitational force on it is different. It would be simpler if 
we could use the same graph for different objects regardless of their mass.

The graph that can be used for this purpose is a graph of the gravitational field 
against distance. The gravitational force on a mass at a point in space is just the 
value of the gravitational field at the point times its mass. Similarly, the change 

in energy for an object that 
moves from one point to another 
can obtained by multiplying the 
area under the graph of the gravi-
tational field against distance by 
its mass. 

The unit for gravitational field 
is Newtons per kilogram. The 
unit for the area under a graph 
of gravitational field against 
distance is (Newtons per kilo-
gram)  × metre, hence Newton 
metre per kilogram or simply 
Joule per kilogram. The change 
in energy can be obtained from 
this area by multiplying by the 
mass of the object. 

This method was also used in 
Chapter 2 on page 57 with the 
gravitational field close to the 
Earth’s surface where the field 
strength is usually constant.

Graph of the strength of the Earth’s gravitational field
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Revision question 4.7

If a rock of mass 1  kg was thrown upwards from the Earth’s surface with suf-
ficient kinetic energy to escape the Earth’s gravitational field, the amount of kin-
etic energy required would be the area under the graph out to infinity. Using 
a distance of 10 Earth radii as an approximation for infinity, show that the 
required initial speed is about 11  km s−1.

Astronauts and satellites in orbit
As we saw earlier, Newton used his law of Universal Gravitation to show that 

Kepler’s Third Law, 
π

=R
T

MG
4

3

2 2
, applies to all satellites going around the same 

central mass. In the context of the Earth, this means that 
R
T

3

2
 is the same for 

every single artificial satellite, regardless of the orientation of its orbit, as well 
as the Moon itself. Because we know the period and the radius of the Moon’s 
orbit, we can use the method of ratios to calculate the characteristics of any 
other satellite:

or 

=

⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

R

T

R

T

R
R

T
T

M
3

M
2

sat
3

sat
2

M

sat

3
M

sat

2

.

The benefit of this method is that because you are working with ratios, you 
don’t need to use metres and seconds for your data. Earth radii and days can 
be used, making for simpler calculations.

The orbit of the Moon is slightly elliptical, but the average radius of the 
Moon’s orbit is about 384  000  km or about 60 Earth radii.

The period of the Moon in relation to the stars is called the sidereal period 
and has been measured at 27.321  582 days (or approximately 2.36 × 106 sec-
onds). For our purposes we can use 27.3 days. The period of the Moon in 
relation to the Sun, that is the time between full moons, is 29.5 days; this is 
longer than the sidereal period because in that time the Earth has moved fur-
ther around the Sun.

Geostationary satellites
Artificial satellites are used for communication and exploration. Some transmit 
telephone and television signals around the world, some photograph cloud 
patterns to help weather forecasters, some are fitted with scientific equipment 
that enables them to collect data about X-ray sources in outer space, whereas 
others spy on our neighbours! The motion of an artificial satellite depends on 
what it is designed to do. Those satellites that are required to rotate so that they 
stay constantly above one place on Earth’s surface are called geostationary 
satellites and they are said to be in geostationary orbit. In order to stay in pos-
ition, a geostationary satellite must have the same period as the place it is 
above. Therefore, geostationary satellites have a period of 24 hours or 1 day.

Sample problem 4.5

What is the radius of the orbit of a geostationary satellite as a multiple of the 
Earth’s radius and also in metres?

Unit 3 Satellites and 
gravitational 
force
Concept summary 
and practice 
questions
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Do more
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A satellite in geostationary orbit 
is stationary relative to a point 
directly below it on Earth’s surface. 
A geostationary orbit has the same 
period as the rotation of Earth.
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RM = 60 × RE, TM = 27.3 days, Tsat = 1 day, Rsat = ?

Rearranging ⎛
⎝⎜

⎞
⎠⎟
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R 6.62 6.38 10 m
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6
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= × ×
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Revision question 4.8

(a) Use a small coin to draw a circle in the middle of a blank page to represent 
the equator of the Earth.

(b) Using the answer from sample problem 4.5, put a dot on the page where you 
estimate a geostationary satellite would be.

(c) Draw two lines from the dot to the circle representing the Earth, to touch the 
circle at a tangent. The part of the circle facing the satellite between these 
two lines represents how much of the Earth’s surface could receive signals 
from the satellite.

(d) Use your diagram to determine the minimum number of geostationary 
satellites required to cover all of the Earth’s equator.

(e) Which parts of the Earth could not receive signals from any of these geosta-
tionary satellites?

Revision question 4.9

Global Positioning System (GPS) satellites are used for navigation. The Navstar 
66 satellite, launched in 2011, has an orbital radius of about 20  100 km. What is 
the period of its orbit expressed in days?

AS A MATTER OF FACT

Why are geostationary satellites always above the equator? Why isn’t 
there a geostationary satellite directly above central Australia?

Newton showed that the motion of a large object can be analysed as if 
all of its mass was concentrated at a single point, called its centre of mass. 
For a symmetrical object such as the Earth, the centre of mass is located 
at its geometric centre. Thus, all satellites around Earth are in orbit about 
the centre of the Earth.

If a satellite was to be directly above central Australia for 24 hours each 
day, the centre of its orbit would be at the centre of the matching circle of 
latitude, some distance away from the centre of the Earth. 

If instead a satellite was to be only momentarily directly above central 
Australia, given the centre of its orbit is the centre of the Earth, the orbit 
would take it into the sky above the northern hemisphere for half the time.

This is why geostationary communication satellites orbit around the 
equator. A satellite dish has to be angled at the latitude of that point on 
the Earth to point towards one of these satellites.

Solution:
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‘Floating’ in a spacecraft

An astronaut inside the International Space Station

The appearance of an astronaut floating around inside a spacecraft suggests 
that there is no force acting on them, leading some people to mistakenly think 
that there is no gravity in space. In fact, both the astronaut and the spacecraft 
are in a circular orbit about the Earth.

However, you also know that if an object is moving in a curved path, 
changing its direction, there must be an acceleration. If the path is circular the 
acceleration is directed towards the centre of that path.

The astronaut and the space craft are in the same gravitational field. They 
are at the same distance from the centre of the Earth. They are travelling at the 
same speed, taking the same time to orbit the earth. Therefore, their centrip-
etal accelerations provided by the gravitational field are the same.

For the spacecraft:  For the astronaut:
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There is no need for a normal reaction force by the spacecraft on the astro-
naut to explain the astronaut’s motion. The astronaut inside the spacecraft 
circles the Earth as if the spacecraft was not there. Indeed, if the astronaut is 
outside the spacecraft doing a space walk, the astronaut’s speed and accel-
eration around the Earth will be unchanged as they ‘float’ beside the space-
craft. Once back inside, their speed and acceleration are still unchanged, and 
this time they are ‘floating’ inside the spacecraft.

If the astronaut steps onto a set of bathroom scales, they will give a reading 
of zero. As shown in the second photo opposite, an astronaut running on a 
treadmill needs stretched springs attached to his waist to pull him down to 
the treadmill.

Unit 3 Normal reaction 
forces in 
uniform orbits
Concept summary 
and practice 
questions

AOS 1

Topic 1

Concept 6
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This astronaut is floating 
inside the International Space 
Station. Both the astronaut 
and the station are in orbit 
around the Earth.

The cloth-covered stretched springs are pulling the astronaut down so he can 
exercise on the treadmill.
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Chapter review
Unit 3 Gravitational fields 

and forces

Sit Topic test

AOS 1

Topic 1

Summary
 ■ The gravitational field strength g at a distance r from a 

body of mass M is given by the formula g = M
R

G
2  where 

G is the gravitational constant. The force of gravity F 
on an object of mass m at a distance r from the same 

body is therefore given by F = Mm
R

G
2 . This equation is 

referred to as Newton’s Law of Universal Gravitation.

 ■ For a given planetary or satellite system, 
R
T

3

2  is con-

stant. The value of the constant is equal to 
π
MG

4 2
 where 

M is the mass of the central body.
 ■ Gravitational attraction can be explained using a 

field model.
 ■ The field model enables the gravitational field around 

a point mass to be described in terms of its direction 
and shape, and also its strength.

 ■ The field model also enables descriptions of the 
changes in potential energy of an object moving in 
the gravitational field of a point mass.

 ■ Changes in potential energy can be calculated from the 
area under a force–distance graph and from the area 
under a field–distance graph when multiplied by mass.

 ■ Satellites in orbit and their occupants (who are also 
in orbit) experience no reaction force.

Questions
In answering the questions on the following pages, 
assume, where relevant, that the magnitude of the 
gravitational field at Earth’s surface is 9.8  N  kg−1. 
Additional data required for questions relating to bodies 
in the solar system can be found in table 4.1 on page 110.

Modelling the motion of satellites
 1. A gravitational field strength detector is released 

into the atmosphere and reports back a reading of 
9.70  N  kg−1.
(a) If the detector has a mass of 10  kg, what is the 

force of gravity acting on it?
(b) If the detector is to remain stationary at this 

height, what upwards force must be exerted on 
the detector?

(c) How far is the detector from the centre of Earth?
 2. Use the information provided in table 4.1 on page 

110 to calculate (i) the gravitational field strength 
and (ii) the weight of a 70  kg person at the surface 
of the following bodies of the solar system:
(a) Earth (c) Venus
(b) Mars (d) Pluto.

 3. A space probe orbits a distance of 5.0 × 105  m 
from the centre of an undiscovered planet. It 
experiences a gravitational field strength of 
4.3  N  kg−1. What is the mass of the planet?

 4. Calculate the force of attraction between Earth 
and the Sun.

 5. If the Earth expanded to twice its radius without 
any change in its mass, what would happen to 
your weight?

 6. By how much would your reading on bathroom 
scales change with the Moon on the opposite side 
of the Earth to you, compared with being above 
you?

 7. Determine the value of the ratio 
F

F
on Moon by Sun

on Moon by Earth
.

  Assume the Moon is the same distance from the 
Sun as the Earth is.

 8. How many Earth radii from the centre of the 
Earth must an object be for the gravitational 
force by the Earth on the object to equal the 
gravitational force that would be exerted by the 
Moon on the object if the object was on the 
Moon’s surface?

 9. A space station orbits at a height of 355  km above 
Earth and completes one orbit every 92 min.
(a) What is the centripetal acceleration of the 

space station?
(b) What gravitational field strength does the 

space station experience?
(c) Your answers to (a) and (b) above should be 

the same. (i) Explain why. (ii) Explain any 
discrepancy in your answers.

(d) If the mass of the space station is 1200 tonnes, 
what is its weight?

(e) The mass of an astronaut and the special 
spacesuit he wears when outside the space 
station is 270  kg. If he is a distance of 10  m 
from the centre of mass of the space station, 
what is the force of attraction between the 
astronaut and the space station?

 10. What is the centripetal acceleration of a person 
standing on Earth’s equator due to Earth’s rotation 
about its axis? (Radius of Earth is 6.38 × 106  m.) 
Would the centripetal acceleration be greater or 
less for a person standing in Victoria? Justify your 
answer.

 11. In the future, it is predicted that space stations 
may rotate to simulate the gravitational field of 
Earth and therefore make life more normal for 
the occupants. Draw a diagram of such a space 
station. Include on your diagram:
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 ■ the axis of rotation
 ■ the distance of the occupants from the axis 
 ■ arrows indicating which direction the occupants 

would consider as ‘down’. 
  (Remember to consider the frame of reference of 

the occupants!) Make an estimate of the period of 
rotation your space station would need to simulate 
Earth’s gravitational field.

 12. Neutron stars are thought to rotate at about 
1 revolution every second. What is the minimum 
mass for the neutron star so that a mass on the 
star’s surface is in the same situation as a satellite 
in orbit, that is, the strength of the gravitational 
field equals the centripetal acceleration at the 
surface?

 13. The Sun orbits the centre of our galaxy, the Milky 
Way, at a distance of 2.2 × 1020  m from the centre 
with a period of 2.5 × 108 years. The mass of all the 
stars inside the Sun’s orbit can be considered as 
being concentrated at the centre of the galaxy. The 
mass of the Sun is 2.0 × 1030  kg. If all the stars have 
the same mass as the Sun, how many stars are in 
the Milky Way?

 14. The asteroid 243 Ida was discovered in 1884. The 
Galileo spacecraft, on its way to Jupiter, visited 
the asteroid in 1993. Search online for images of 
the flyby. The asteroid was the first to be found 
to have a natural satellite, that is, its own moon, 
now called Dactyl. Dactyl orbits Ida at a radius of 
100 km and with a period of 27 hours. What is the 
mass of the asteroid?

Motion of the planets
 15. What force holds the solar system together? 

Explain how this results in the planets moving in 
roughly circular orbits.

 16. Venus and Saturn both orbit the Sun. Using 
only information about the Sun and the periods 
of the two planets, calculate the value of the  
ratio:

  

distance of Saturn from the Sun
distance of Venus from the Sun

.

 17. A spacecraft leaves Earth to travel to the Moon. 
How far from the centre of the Earth is the 
spacecraft when it experiences a net force of zero?

   Use the data in table 4.1 to determine where 
that point is, and draw a scale diagram to show its 
location.

 18. A satellite is in a circular orbit around the Earth 
with a radius equal to half of the radius of the 
Moon’s orbit. What is the satellite’s period 
expressed as a fraction of the Moon’s period about 
the Earth?

Satellites of the Earth
 19. A geostationary satellite remains above the 

same position on Earth’s surface. Once in orbit, 
the only force acting on the satellite is that 
of gravity towards the centre of Earth. Why 
doesn’t the satellite fall straight back down to 
Earth?

 20. A new geostationary satellite is to be launched. 
At what height above the centre of Earth must the 
satellite orbit?

 21. Can a geostationary satellite remain above 
Melbourne? Why or why not?

 22. Explain why the area under a gravitational force–
distance graph gives the energy needed to launch 
a satellite, but the area under a gravitational field 
strength–distance graph gives the energy per 
kilogram needed to launch a satellite.

 23. A space shuttle, orbiting Earth once every 93 mins 
at a height of 400  km above the surface, deploys a 
new 800  kg satellite that is to orbit a further 200  km 
away from Earth.
(a) Use the following graph to estimate the 

work needed to deploy the satellite from the 
shuttle.

(b) Use the mass and radius of Earth to assist 
you in determining the period of the new 
satellite.

(c) Show how the period of the new satellite can 
be determined without knowledge of the mass 
of Earth.

(d) If the new satellite was redesigned so that its 
mass was halved, how would your answers to 
(a) and (b) change?
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 24. A disabled satellite of mass 2400  kg is in orbit 
around Earth at a height of 2000  km above sea 
level. It falls to a height of 800 km before its 
built-in rocket system can be activated to stop the 
fall continuing.



UNIT 3128
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(a) Calculate the gravitational force on the 
satellite while it is in its initial orbit.

(b) Calculate the loss of gravitational potential 
energy of the satellite during its fall.

(c) If the speed of the satellite during its initial 
orbit is 6900  m  s−1, what is its speed when the 
rocket system is activated?

 25. In a space shuttle that is in orbit around Earth at 
an altitude of 360  km, what is the magnitude of:
(a) the gravitational field strength
(b) the reaction force by the shuttle on a 70 kg 

astronaut
(c) the gravitational force by the Earth on this 

astronaut?
 26. Why does the gravitational force do no work on a 

satellite in orbit?



The concept of the electric field allows us to make use 
of electricity to provide power and light. It also explains 
many physical phenomena.

REMEMBER

Before beginning this chapter, you should be able to:
 ■ recognise that charged objects can experience forces of 
attraction and of repulsion

 ■ apply the concepts of charge (Q), current (I), voltage (V) 
and energy (U) to electrical situations.

KEY IDEAS

After completing this chapter, you should be able to:
 ■ describe electricity using a field model
 ■ apply Coulomb’s Law to the force between point charges

 ■ describe the electric field around a point charge in terms 
of its direction and shape

 ■ calculate the strength of the electric field at a point a 
distance, r, from a point charge

 ■ describe potential energy changes of an object moving in 
the electric field of a point charge

 ■ analyse the acceleration and potential energy changes of 
a charged particle in an uniform electric field.

5 Electric fields

CHAPTER
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The long road to Coulomb’s Law
You will probably have experienced a small electric shock when you touched a 
metal rail after walking across carpet. This phenomenon has been observed for 
thousands of years. Objects such as glass, gemstones and amber (petrified tree 
resin) can become ‘electrified’ by friction, when they are rubbed with materials 
such as animal fur and fabrics, producing a little spark. The Ancient Greek 
word for amber is elektron. 

Investigators tried to explain the various manifestations of electricity, but an 
understanding of the phenomenon was elusive. Both attraction and repulsion 
were observed, but initially repulsion was considered less important. In 1551 
Girolamo Cardano realised that this electrical attraction was different from mag-
netic attraction. In 1600 William Gilbert, the physician to Elizabeth I, found that 
other substances such as glass and wax could be ‘electrified’, but he concluded 
that metals could not. In 1729 Stephen Gray discovered that electric charge 
could pass through materials such as the human body and metals. He concluded 
that some objects are conductors and others insulators. In 1734 Charles du Fay 
showed that Gilbert was wrong about metals: they could be charged as long as 
the metal was in a handle of glass. However, du Fay thought there were two fluids, 
to explain the two types of charge, whereas Benjamin Franklin in 1746 suggested 
there was only one fluid. Objects with an excess of this fluid were designated 
positively charged, while negatively charged objects were deficient in the fluid.

Experiments continued, not only to identify what electricity was, but also to 
determine how strong the electric force was and what affected its strength.

In 1766 Franklin tried an experiment involving a hollow metal sphere with 
a small hole. He charged up the sphere and then lowered a small cork car-
rying an electric charge inside the sphere. Nothing happened to it — it was 
not pushed around, no matter where he placed the test charge. He wrote 
about this to his friend Joseph Priestley in England. Priestley was aware 
of Newton’s Law of Universal Gravitation, which is an inverse square law 

F
r

(
1

)
2

∝ . He also knew that Newton had proved mathematically that because 

of the inverse square law, no net gravitational force exists inside a hollow 
sphere. That is, at every point inside the sphere, the gravitational force from 
the mass on one side is balanced by the force from the mass on the other side.

Priestley confirmed Franklin’s results and realised that this was strong evi-
dence that the inverse square law applied to electricity. In 1767 he published 
his finding that electric force was an inverse square law. Unfortunately, his 
paper went unnoticed by other scientists of his time.

If the force between two charges was an inverse square law, that is, F
r
1
n

∝  
where n = 2, could the value of n be experimentally confirmed?

In 1769 John Robison investigated how the force between charges changed 
with separation. He determined the value of the power, n, to be 2.06, very close 
to 2. In the 1770s Henry Cavendish measured the value as between 1.96 and 
2.04, but he never published his results.

In 1788 and 1789 Charles-Augustin de Coulomb published a series of 
8  papers on different aspects of his electrical experiments, showing that the 
electric force satisfied the inverse square law.

TABLE 5.1 The results of some of Coulomb’s experiments

Observed force

Distance

Observed Calculated from the inverse square law

36 units 36 units 36 units

144 units 18 units 18 units

576 units 8.5 units  9 units
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These results are no better than the earlier ones, so why was Coulomb’s Law 
named after him?

Coulomb’s papers were excellent examples of scientific writing. They were 
well organised and thorough. He described his apparatus in detail, and he dis-
cussed possible sources of error in his measurements. He also used two dif-
ferent methods to determine the value of n, obtaining the same result with 
each.

To investigate the force between two charges, Coulomb designed a torsion 
balance. His torsion balance had a long silk thread hanging vertically with a 
horizontal rod attached at the end. On one end of the rod was a small met-
al-coated sphere. On the other end was a sphere of identical mass to keep the 
rod level. The metal sphere was given a quantity of charge and a second metal 
sphere, charged with the same type of charge, was lowered to be in line with 
the first sphere. The electrical repulsion caused the silk thread to twist slightly. 
The angle of twist or deflection of the rod was a measure of the strength of the 
repulsive force.

Coulomb was able to measure the force to an accuracy of less than a mil-
lionth of a Newton.

Coulomb’s Law: The force between two charges at rest is directly proportional to 
the product of the magnitudes of the charges and inversely proportional to the 
square of the distance between them.

F
q q

r
1 2

2∝

This expression has no equals sign; it is not an equation or formula.  Coulomb 
was able to measure the force and separation very accurately, but charge was 
such a new concept that there were no units to measure it. Coulomb was only 
able to show that halving the size of each charge reduced the size of the force 
by a quarter.

It was not until the unit for current, the ampere, was defined and precisely 
measured that a unit for charge could be defined and calculated using the 
relationship charge = current × time (Q = I  × t). This unit was called the cou-
lomb after Charles-Augustin de Coulomb. One coulomb of charge equals the 
amount of charge that is transferred by one ampere of current in one second.

A coulomb of charge is a large quantity of charge. For example, the amount 
of charge transferred when fur is rubbed against a glass rod is a few millionths 
of a coulomb. In a typical lightning strike, about 20 coulombs of charge is trans-
ferred, whereas in the lifetime of an AA battery, about 5000 coulombs passes 
through the battery.

When the electron was discovered, its charge was determined as 1.602 × 10−19 
coulombs, which means that the total charge of 6.241 × 1018 electrons would 
equal one coulomb.

Once a unit to measure charge was available, the above relationship for the 
force between charges could be written as an equation with a proportionality 
constant, k:

F
q q
r

k 1 2
2

=

where k is a constant with a value of 8.988 × 109  N  m2  C−2. (In fact, it only has 
this value if there is a vacuum between the charges. Air has a similar value, but 
if the charges are immersed in any other substance, the force is reduced.)

For ease of calculation and remembering, the value of k is usually approxi-
mated to 9.0 × 109  N  m2  C−2. This constant has no special name, unlike the con-
stant in Newton’s Law of Universal Gravitation. It goes by various names, such 
as ‘the electric force constant’ and ‘Coulomb’s constant’.

Coulomb’s torsion balance

thin thread

insulating
rod

scale
charged spheres

+ +

Unit 3 Electric force
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Quantity Charge

Symbol Q

Unit Coulomb, C

Example Q = 5.0 C

Interactivity
Doing the twist
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Electric fields
Attraction and repulsion between charges occurs without the need for contact. 
There is ‘action at a distance’. To explain such interactions, Michael Faraday 
(1791–1867) proposed the concept of a ‘field’. In the case of an electric charge, 
there was an electric field in the space around the charge such that if a second 
charge was placed in that space, it would experience an electrical force. The 
electric field at that point interacts directly with this second charge to produce 
a force.

If the first charge is represented by Q and the second charge is a small test 

charge, q, then the force is given by F
Qq
r

k
.

2
=  The strength of the electric field, E, 

is defined by the force on the small test charge divided by the size of the test 
charge, or force per unit charge, and the unit for electric field is Newtons per 
coulomb or N C−1:

=

=

⎛
⎝⎜

⎞
⎠⎟

=

E
F
q

E

Qq
r
q

E
Q

r

k

k

2

2

This is a similar situation to the expressions for gravitational field.

TABLE 5.2 Comparison between expressions for electric and gravitational fields

Force and field between masses Force and field between charges

F
m m
r

G
g

1 2
2

= F
q q
r

k 1 2
2

=

Fg = mg F = qE

g
M

r
G

2
= E

Q
r
k

2=

However, electrical interactions are different from gravitational interactions 
in that electric charges can attract and repel. There are two types of charge, 
positive and negative, with like charges repelling each other and unlike charges 
attracting.

Drawing an electric field
When we draw a gravitational field, the field lines indicate the direction in 
which a mass would move. But for an electric field, because there are two 
types of charge, a convention is needed so that we can correctly interpret 
field diagrams. The convention is that the direction of the field is the direc-
tion in which a positive charge would move. This is shown in the following 
diagrams.
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–+

(a) (b)

Fields around (a) a positive charge and (b) a negative charge

–+ ++ +

Fields around (a) a positive and negative charge of equal quantity, and (b) two 
positive charges of equal value. Close spacing of field lines indicates a strong 
field. Diverging lines indicate the field is weaker.

Revision question 5.1

Draw the electrical fields around the following configurations.
(a) Two separated negative charges
(b) Two positive charges and two negative charges at the corners of a square 

with like charges diagonally opposite each other

Calculating the value of an electric field
The strength of an electric field can be determined from the equation E

Q
r
k

2= .

Sample problem 5.1

What is the magnitude and direction of the electric field at a point 30  cm left of 
a point charge of +2.0 × 10−5  C?

Using E
Q

r
k

,2=

   

E
9.0 10 Nm C 2.0 10 C

(30 10 m)

2.0 10 NC .

9 2 2 5

2 2

6 1

= × × ×
×

= ×

− −

−

−

Because the point charge is positive, the direction of the electric field is to the left.

Unit 3 Field around a 
point mass and 
point charge
Summary screen 
and practice 
questions

AOS 1

Topic 4

Concept 1

Solution:
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Revision question 5.2

What is the magnitude and direction of the electric field at a point 50  cm right of 
a point charge of –3.0 × 10–6  C?

Dipole fields
When a positive charge and a negative charge are separated by a short dis-
tance, the electric field around them is called a dipole field. This concept is 
more relevant to magnetic fields, where the ends of a bar magnet have dif-
ferent polarities (north and south). However, electric dipoles do occur in 
nature.

Electric dipoles mainly occur with the shared electrons in the bonds 
between atoms in molecules. For example in a molecule of water, H2O, the 
oxygen atom more strongly attracts the shared electrons than do each of the 
hydrogen atoms. This makes the oxygen end of the molecule more negatively 
charged and the hydrogen end more positively charged. Because of this, the 
water molecule is called a polar molecule. It is this polarity that makes water so 
good at dissolving substances.

An antenna can be described as a varying electric dipole. To produce a radio 
or a TV signal, electrons are accelerated up and down the antenna. At one 
moment the top may be negative and the bottom positive, then a moment later 
the reverse is the case.

AS A MATTER OF FACT

The structure of DNA and electrical attraction
A DNA molecule is a long chain molecule built from four small  molecules: 
adenine (A), cytosine (C), guanine (G) and thymine (T). These are 
arranged along the DNA molecule according to a code called the genetic 
code. Different sequences of A, C, G and T code for different amino acids, 
which are combined one after the other to produce different protein mol-
ecules. Two DNA molecules wrap around each other in a spiral to pro-
duce a double-helix chromosome.

The two DNA molecules in the helix are held together by electrical 
attraction between the polar ends of the four small molecules, A, C, G, 
and T. The chromosome is able to replicate itself because A and T can 
only pair up with each other, and likewise C and G can only pair up with 
each other. If there is an A on one strand, there must be a T immediately 
opposite on the other strand, and so on.

A

T
C

C
G

G
A

T
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G
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Electrical attraction in a DNA molecule

partial negative charge

partial positive charge
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O
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A water molecule (H2O) displays 
polarity because the shared 
electrons are attracted more 
strongly to the oxygen atom 
than to the hydrogen atoms.
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Partial circuit diagram of an 
antenna
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The figure below shows that one of the oxygen atoms in the thymine 
molecule is slightly negative, and one of the hydrogen atoms in the ade-
nine molecule is slightly positive. Similarly, a hydrogen atom in the thy-
mine molecule is slightly positive, and a nitrogen atom in the adenine 
molecule is slightly negative. These two slight electrical attractions are 
enough to hold these two molecules together, and the separations across 
these weak bonds are comparable in length.

Electrical attraction between thymine and adenine molecules
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0.300
nm
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Guanine and cytosine have a similar arrangement, except that there 
are three pairs of electrical attraction. Most importantly, the separations 
of the weak bonds between guanine and cytosine are comparable to each 
other and also to those of adenine and thymine. Without this matchup of 
separations, a chromosome could not hold together, nor could it form a 
double helix.
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N

N C

CC

C N

CH

OH

0.290 nm

0.300 nm

Electrical attraction between guanine and cytosine molecules

Graphing the electric field
The direction of the electric field is the direction in which a positive test charge 
would move. 

For a central positive charge, the direction of the electric field vector at 
a point P is in the same direction as the distance vector to the point P. This 
means the graph of the electric field with distance is above the distance axis.

For a central negative charge, the direction of the electric field vector is in 
the opposite direction to the radius vector, so the graph of the electric field 
around a negative charge will be below the distance axis.
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Changes in potential energy and kinetic energy 
in an electric field
A small positive charge is placed at point Q, some distance from a central 
positive charge. To move the charge to point P, you will need to push inwards 
against the repulsive electrical force. At point P the small charge will have 
electrical potential energy, like a compressed spring. The amount of potential 
energy it has will be equal to the area under the field–distance graph times 
its charge. If the small charge was released, all this potential energy would be 
converted into kinetic energy by the time the charge reached Q.

If instead a small negative charge was placed at Q, it would experience an 
attractive electrical force, and when the charge reached P, the shaded area 
would represent its gain in kinetic energy.

Uniform electric fields
If a set of positive and negative charges were lined up in two rows facing each 
other, the lines of electric field in the space between the rows would be evenly 
spaced, that is, the value of the strength of the field would be constant. This is 
called a uniform electrical field. 

It is also very easy to set up. Just set two metal plates a few centimetres apart, 
then connect one plate to the positive terminal of a battery and connect the 
other plate to the negative terminal of the battery. The battery will transfer 
electrons from one plate, making it positive, and put them on the other, making 
that one negative. The battery will keep on doing this until the positive plate is 
so positive that the battery’s voltage, or the energy it gives to each coulomb 
of electrons, is insufficient to overcome the attraction of the positive charged 
plate. Similarly, the negatively charged plate will become so negative that the 
repulsion from this plate prevents further electrons being added.

An electric field between two plates

– – – – – – – – – –

–

–

–
+ + + + + + + + + +

+
DC 
supply

plate X

E

plate Y

Diagrams and field–distance 
graphs for the electric field 
around (a) a positive charge 
and (b) a negative charge

A field–distance graph for a 
positive charge at P near a 
central positive charge at Q
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r
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A uniform electric field

–

+

–

+

–

+

–

+

–

+

–

+



137CHAPTER 5 Electric fields

Electric field strength equals the gradient of the voltage–distance graph.

DistancePlate Y Plate X

Voltage

V
E

DistancePlate Y Plate X

Electric
field

If a space contains a uniform field, that means that if a charge was placed in 
that space it would experience a constant electric force, F = Eq. The direction 
of the force on a positive charge will be in the direction of the field, and the 
force on a negative charge will be opposite to the field direction. Also, because 
the force is constant, the acceleration will be constant. As we will see later, the 
situation with a charged particle in the space between the plates in the figure 
above is similar to the vertical motion under gravity. Indeed, if a charged par-
ticle is injected with speed into the field from one side, its subsequent motion 
is similar to projectile motion.

What is the strength of a uniform electric field?
In the situation of an electric field between two plates, it is not easy to apply 
Coulomb’s Law, as there are many charges on each plate interacting with 
each other. An alternative approach is needed — one that uses the concept of 
energy.

The emf of a battery, or its voltage, is the amount of energy that the battery 
gives to each coulomb of charge. A battery of V volts would use up V joules of 
energy transferring one coulomb of electrons from the top plate through the 
wires to the bottom plate. Once on the negative plate, this coulomb of elec-
trons would have V joules of electrical potential energy.

If this coulomb of electrons could be released from the negative plate, it 
would be accelerated by the constant force of the electric field between the 
plates, gaining kinetic energy like a stone falling in a gravitational field. And as 
in a gravitational field, the gain in kinetic energy equals the loss in electrical 
potential energy.

The gain in kinetic energy of one coulomb of charge = V joules.
The gain in kinetic energy for q coulombs of charge = qV joules.
This is the relationship W = qV.

Work done on = quantity of × voltage drop or
q coulombs of charge (W) charge (q) potential difference (V)

However, work done (W) also has a definition of motion:

W F d

W Fd

Work done ( ) force ( ) displacement ( )= ×
=

But the force, if it is an electrical force, is given by F = qE, so W = qE × d, 
where d in this instance is the separation of the plates.

Equating the two expressions for work done,

qE × d = q × V.

Cancelling the charge, q, gives

E
V
d

= .
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This provides an alternative unit for electric field of volts per metre or V m−1. 
So, like gravitational field strength, electric field strength has two equivalent 
units: either newtons per coulomb or volts per metre. Using volts per metre 
makes it very easy to determine the strength of a uniform electric field.

Sample problem 5.2

What is the strength of the electric field between two plates 5.0 cm apart con-
nected to a 100  V DC supply?
V = 100  V, d = 5.0  cm = 5.0 × 10−2  m, E = ?

E
V
d

100 V
5.0 10 m

2000 V m

2

1

=

=
×

=

−

−

Revision question 5.3

(a) Calculate the strength of the electric field between a storm cloud 1.5  km 
above ground and the ground itself if the voltage drop or potential differ-
ence is 30  000  000  V. Assume a uniform field.

(b) How would the strength of the electric field change if the storm cloud was 
higher?

In developing the expression for the strength of a uniform electric field, the 
relationship W = Vq was used. The implication of W = Vq is that the energy 
gained by a charge in moving across the gap between the plates only depends 
on the voltage drop or the potential difference across them. It does not depend 
on the separation of the plates. This does not seem right, because if the plates 

are further apart, the electric field is weaker by E
V
d

,=  so the force and the 
acceleration will be less.

The explanation is that although the force may be less when the plates are 
further apart, the force acts on the charge over a greater distance. If the separ-
ation is doubled, the field strength and therefore the force is halved, but it acts 
over twice the distance.

Work done = force × displacement

 W = Fd

Using the definition of an electric field, F = qE, this becomes

 W = qE × d.

Using the alternative formula for electric field strength, E
V
d

,=  this becomes

 
W q

V
d

d.= × ⎛
⎝⎜

⎞
⎠⎟ ×

Simplifying,

 W = qV.

An electric field as a particle accelerator
An electric field can be used to increase the speed and kinetic energy of 
charged particles. This is the case in all of the devices in the following table.

Solution:
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TABLE 5.3 Devices that use electric fields to accelerate charged particles

Device Operation Purpose

Mass spectrometer Accelerate positive ions of different mass, which 
then enter a uniform magnetic field and curve 
around to hit a screen in different spots

To measure the abundance of different 
elements and isotopes in a sample

Electron microscope Accelerate electrons, which then pass through 
electric and magnetic lenses to produce an 
image

To use an electron beam to examine very 
small objects

Synchrotron Accelerate electrons close to the speed of light, 
then feed them into a storage ring

To produce intense and very narrow 
beams of mainly X-rays to examine the fine 
structure of substances such as proteins

Large Hadron Collider Accelerate protons or lead ions close to the speed 
of light, then let them collide

To test the predictions of theories of particle 
physics, e.g. the existence of the Higgs 
boson

The first part of all of these devices is an electron gun, a device that is 
designed to produce electrons and then give them an initial acceleration.

The diagram shows two metal plates with a small hole cut in the middle of each 
plate. The plates have been connected to a DC power supply. In the hole of the 
negative plate is a filament of wire, like the filament in an incandescent light globe, 
connected to a low voltage. When the current flows in this circuit, the filament 
glows red hot. The electrons are, in a sense, ‘boiling at the surface’ of the filament. 
The electric field can easily pull the electrons off the surface of the filament.

The hole in the positive plate is in a direct line with the filament, so as the 
electrons are accelerated across the space between the plates, they go straight 
through the hole to the next part of the machine. This design is called an elec-
tron gun. It produces the electrons that generate the picture in a television 
tube, and it also produces the electrons for a synchrotron.

Sample problem 5.3

An electron is accelerated from one plate to another. The voltage drop between 
the plates is 100  V.
(a) How much energy does the electron gain as it moves from the negative 

plate to the positive plate?
(b) How fast will the electron be travelling when it hits the positive plate, if it 

left the negative plate with zero velocity?
Use mass of electron = 9.1 × 10−31  kg, charge on electron = 1.6 × 10−19  C.

(a) W = Vq
   = 100  V × 1.6 × 10−19  C
   = 1.6 × 10−17  J
 Energy gained is 1.6 × 10−17  J.
(b) Energy is gained as kinetic energy.

E mv

v

v

v

 12

1.6   10 J   12    9.1   10 kg   

 
2   1.6   10 J

9.1   10 kg

5.9   10 m s

k
2

17 31 2

2
17

31

6 1

=

× = × × ×

= × ×
×

= ×

− −

−

−

−

 The speed of the electron is 5.9 × 106  m  s−1 or 5900  km  s−1, which is about 
2% of the speed of light.

The electrons on the hot 
filament are attracted across 
to the positive plate and pass 
through the hole that is in line 
with the beam.

Solution:
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Revision question 5.4

Repeat sample problem 5.3 but with a voltage drop of 1000  V.

Beyond an accelerating voltage of 1000  V, special relativity comes into play 
(as discussed in chapter 3). In relativistic situations, as the speed comes closer 
to the speed of light, the method shown above for determining the speed of the 
electron increasingly gives the wrong answer.

Linking the concepts together
In this chapter, the four concepts of force, field, energy and potential have been 
used to explain electrical interactions and to calculate the values of various 
physical quantities. The significance of these concepts and their relationships 
is not only that the same concepts can be used for other fields, but that the 
relationships between the concepts are the same in different types of fields.

The relationships are best illustrated in a diagram. For example, consider 
a uniform electric field. If you start with the potential, V, in the bottom right 
corner, each of the other three quantities can be determined by the mathemat-
ical operations beside each arrow. 

The relationships between 
force, field strength, energy and 
potential in a uniform electric 
field

force
F = qE

field

V
potential

E = 

divide 
by d

multiply by q

multiply by q

multiply
by d

W = Fd, W = qV
energy

gradient of voltage–
distance graph 

area under force–
distance graph

0 0

0

V—
d

Note that the descriptions for the down arrow on the left are the opposite 
mathematical operation to the descriptions for the up arrow on the right. 
‘Divide’ is the opposite of ‘multiply’, and ‘gradient’ is the opposite of ‘area 
under the graph’.

The same analysis can be applied to the electric field around a point charge. 
This time, start with force and Coulomb’s Law.

The relationships between 
force, field strength, energy 
and potential in an electric 
field around a point charge

force field

divide by q

divide by q

area under force–
distance graph

area under field–
distance graph

W
energy

V
potential

F = 00
kQq
r2

E = 
kQ
r2

Unit 3 Characteristics 
of fields
Summary screen 
and practice 
questions

AOS 1

Topic 4

Concept 2
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The course covered by this textbook considers energy in non-uniform elec-
tric fields, such as the field around a point charge, in only a qualitative manner. 
Further study of electric fields will cover expressions for electrical potential 
energy and electric potential near a point charge.

These two diagrams for a uniform field and a non-uniform field also have 
their parallels in gravitation. The only change is to replace charge, q with 
mass, m.

Revision question 5.5

As a revision exercise for gravitation, as well as to check on your understanding 
of the above diagrams, complete the following diagram for a uniform gravi-
tational field, starting with g, the gravitational field strength. 

The relationships between force, field strength, energy and potential in a uniform 
gravitational field

force field

V = ?
potential

g

divide
by h

divide by m

multiply by m

multiply
by h

W = Fd

area under force–
distance graph

0 0
F = ?

GPE = ?
energy

Note: The concept of gravitational potential is not of much use for calcu-
lations in a uniform gravitational field. This is because, unlike electrical tech-
nology, gravitation does not have a ‘gravitational battery’ that can deliver energy 
in joules per kilogram in the way a battery can supply joules per coulomb.
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Chapter review
Unit 3 Electric fields and forces 

Comparing fields 

Sit Topic test

AOS 1

Topics 2 & 4

Summary
 ■ Electric interactions between charges can be 

described with a field model.
 ■ The electric field strength, E, at a distance r from 

an object with charge Q is given by the formula 

E
Q

r
k

2= , where k is the electric force constant. The 

electric force on a object with charge q is given by 

F = qE or F
Qq
r

k
.2=
 
This equation is referred to as 

 Coulomb’s Law.
 ■ The electric field lines around a point charge describe 

the direction and shape of the field.
 ■ The electric force between two charges can be attrac-

tive or repulsive, depending on whether the two 
charges are unlike or alike respectively. When two 
charges are held close together, there is potential 
energy stored in the electric field, and this potential 
energy is converted to kinetic energy when the 
charges are free to move.

 ■ A uniform electric field exists between two metal 
plates connected to a DC supply. The strength of 
the electric field, E, is given by the voltage drop or 

 potential difference across the plates, V, over the 

 plate separation, d: E
V
d

.=
 

This uniform field pro-
duces a constant force on a charge and thus a con-
stant acceleration.

 ■ The energy transferred to a charge q in moving from 
one plate to the other is given by W = Vq.

Questions
Electric force between point charges
 1. What is the experimental evidence for there being 

two types of charge?
 2. A and B are metal spheres x metres apart. Each 

has a charge of +q coulombs. The force they exert 
on each other is 5.0 × 10−4 newtons. Determine 
the magnitude of the force in each of the following 
situations. (Consider the situations separately.)
(a) The separation of A and B is increased to 

2x metres.
(b) A charge of +2q coulombs is added to B. Are 

the forces on A by B and on B by A still equal in 
magnitude?

(c) A charge of –3q coulomb is added to A.
(d) The distance is halved and the charges are 

changed to +0.5q on A and 4q on B.
 3. Find the force of repulsion between two point 

charges with charges of 5.0 microcoulombs (μC) 

  and 7.0 microcoulombs (μC) if they are 20  cm 
apart.

 4. If the force between two charges was 400  mN, how 
far apart would they need to be moved for the 
force to reduce by one-eighth?

 5. How far apart would two charges, each of 
1.0 coulomb, need to be to each experience an 
electric force of 10  N?

 6. Two charged spheres are 5.0  cm apart, with one 
holding twice the amount of charge of the other. 
If the force between is 1.5 × 10−4 newtons, how 
much charge does each sphere have?

 7. Two small spheres are placed with their 
centres 20  cm apart. The charges on each are 
+4.0 × 10−8  C and +9.0 × 10−8  C. Where between 
the two spheres would a test charge experience 
zero net force?

 8. Coulomb’s Law is very similar to Newton’s Law 
of Universal Gravitation. How do these two laws 
differ? Compare electric charge and gravitational 
mass.

 9. How many electrons would need to be removed 
from a coin to give it a charge of +10  μC?

 10. The radius of a hydrogen atom is 5.3 × 10−11  m. 
What is the strength of the electric force between 
the nucleus and the electron?

 11. The nucleus of an iron atom has 26 protons, and 
the innermost electron is 1.0 × 10−12  m away from 
the nucleus. What is the strength of the electric 
force between the nucleus and the electron?

 12. The nucleus of a uranium atom has 92 protons, 
and the innermost electron is about 5.0 × 10−13 m 
away from the nucleus. What is the strength of 
the electric force between the nucleus and the 
electron?

 13. A proton is made up of two ‘up’ quarks of charge 

  
2e
3

+  and one ‘down’ quark of charge 1e
3

− . The

  diameter of a proton is about 8.8 × 10−16  m. Using 
the diameter as the maximum value for the 
separation of the two ‘up’ quarks, calculate the size 
of the electrical repulsion force between them.

 14. What equal positive charge would the Earth and 
the Moon need to have for the electrical repulsion 
to balance the gravitational attraction? Why don’t 
you need to know separation of the two objects?

 15. What is the charge in coulombs of 10  kg of 
electrons?

 16. One example of alpha decay is uranium-238 
decaying to thorium-234. The thorium nucleus has 
90 protons and the alpha particle has two protons. 
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At a moment just after the ejection of the alpha 
particle, their separation is about 9.0 × 10−15  m. 
What is the size of the electrical repulsion force 
between them, and what is the acceleration of the 
alpha particle at this point?

 17. What is the size of the electric force between a 
positive sodium ion (Na+) and a negative chloride 
ion (Cl−) in a NaCl crystal if their spacing is 
2.82 × 10−10  m?

 18. An electric force of 1.5 N acts upwards on a charge 
of +3.0  μC. What is the strength and direction of 
the electric field?

 19. An electric force of 3.0  N acts downwards on 
a charge of –1.5  μC. What is the strength and 
direction of the electric field?

 20. A proton is suspended so that it is stationary in 
an electric field. Using the value of g = 10  m  s−2, 
determine the strength of the electric field.

 21. Use the statement ‘the electric force exerted 
by a charged object A on a charged object B is 
proportional to the charge on B’ and Newton’s 
Third Law to show that the electric force between 
the two charges is proportional to the product of 
the charges.

Electric fields of point charges
 22. Electric field lines can never cross. Why?
 23. If a charged particle is free to move, will it move 

along an electric field line?
 24. Two charged objects, A and B, are held a short 

distance apart. Which object is the source of the 
electric field that acts on B?

 25. One of the units for gravitational field is that of 
acceleration. Is that also true for electric field? If 
not, why not?

 26. Sketch the electric field around two positive 
charges, A and B, where the charge on A is twice 
that on B.

 27. Sketch the electric field around a positively 
charged straight plastic rod. Assume the 
charge is distributed evenly. Sketch the electric 
field as if the rod had a curve in it. If the 
plastic rod was bent into a closed circle, what 
would be the strength of the electric field in 
the middle?

 28. A negative test charge is placed at a point in an 
electric field. It experiences a force in an easterly 
direction. What is the direction of the electric field 
at that point?

 29. Two small spheres, A and B, are placed with their 
centres 10  cm apart. P is 2.5  cm from A. What 
is the direction of the electric field at P in the 
following situations?
(a) A and B have the same positive charge.
(b) A has a positive charge, B has a negative 

charge and the magnitudes are the same.

 30. Determine the strength of the electric field 30  cm 
from a charge of 120  μC.

 31. What is the strength of the electric field 1.0  mm 
from a proton?

Uniform electric fields
 32. Two metal plates, X and Y, are set up 10  cm 

apart. The X plate is connected to the positive 
terminal of a 60  V battery and the Y plate is 
connected to the negative terminal. A small 
positively charged sphere is suspended midway 
between the plates and it experiences a force of 
4.0 × 10−3 newtons.
(a) What would be the size of the force on the 

sphere if it was placed 7.5  cm from plate X?
(b) The sphere is placed back in the middle 

and the plates are moved apart to a separation 
of 15 cm. What is the size of the force now?

(c) The plates are returned to a separation of 
10  cm but the battery is changed. The force is 
now 6.0 × 10−3 newtons. What is the voltage of 
the new battery?

 33. Electrons from a hot filament are emitted into 
the space between two parallel plates and are 
accelerated across the space between them.

6V
100 V

(a) Which battery supplies the field to accelerate 
the electrons?

(b) How much energy would be gained by an 
electron in crossing the space between the 
plates?

(c) How would your answer to (b) change if the 
plate separation was halved?

(d) How would your answer to (b) change if the 
terminals of the 6  V battery were reversed?

(e) How would your answer to (b) change if the 
terminals of the 100  V battery were reversed?

(f) How would the size of the electric field 
between the plates, and thus the electric force 
on the electron, change if the plate separation 
was halved?

(g) Explain how your answers to (c) and (f) are 
connected.

 34. (a)  Calculate the acceleration of an electron 
in a uniform electric field of strength 
1.0 × 106  N  C−1. 
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(b) Starting from rest, how long would it take for 
the speed of the electron to reach 10% of the 
speed of light? (Ignore relativistic effects.)

(c) What distance would the electron travel in 
that time?

(d) If the answer to (c) was the actual spacing of 
the plates producing the electric field, what 
was the voltage drop or potential difference 
across the plates?

 35. In an inkjet printer, small drops of ink are given 
a controlled charge and fired between two 
charged plates. The electric field deflects each 
drop and thus controls where the drop lands on 
the page.

   Let m = the mass of the drop, q = the charge of the 
drop, v = the speed of the drop, l = the horizontal 

length of the plate crossed by the drop, and  
E = electric field strength. 
(a) Develop an expression for the deflection of 

the drop. Hint: This is like a projectile motion 
question.

(b) With the values m = 1.0 × 10−10  kg, v = 20  m s−1, 
l = 1.0  cm and E = 1.2 × 106  N  C−1, calculate 
the charge required on the drop to produce a 
deflection of 1.2  mm.

l

drop
generator

charging
unit

paperdeflecting
plates



REMEMBER

Before beginning this chapter, you should be able to:
 ■ recall that magnets can both attract and repel
 ■ recall that magnets line up with Earth’s magnetic field
 ■ recall that the ends of a magnet are labelled a ‘north-
seeking end’ and a ‘south-seeking end’, or a north end 
and south end for short

 ■ determine the direction of conventional current in a 
DC circuit from the polarity of the battery.

KEY IDEAS

After completing this chapter, you should be able to:
 ■ describe magnetism using a field model
 ■ recall that magnetic fields can be represented by magnetic 
field lines, which start at a north end and go to a south end, 
indicating the direction a magnetic compass would point

 ■ use the concept of a magnetic field to explain magnetic 
phenomena produced by bar magnets and current in 
wires, loops and solenoids

 ■ describe the attraction and repulsion that can occur 
between magnets and current-carrying conductors

 ■ realise that magnetic fields can be constant or changing in 
time, and can be uniform or varying in strength and direction

 ■ use the right-hand-grip rule to determine the direction of 
the magnetic field associated with a current

 ■ recall the unit in which magnetic fields are measured
 ■ determine the size and direction of the force on a current 
in a wire due to a magnetic field

 ■ explain the structure and operation of a simple DC motor, 
including the role of the commutator

 ■ describe the path of a charged particle in a magnetic field
 ■ determine the size and direction of the force on a charge 
moving in a magnetic field

 ■ determine the radius of the path of an electron in a 
magnetic field

 ■ describe the acceleration of charged particles in particle 
accelerators as the particles move through electric and 
magnetic fields.

6 Magnetic fields

CHAPTER

This strong magnet sitting on top 
of a glass shelf creates a magnetic 
field that is able to attract small 
pieces of metal.
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Early ideas about magnetism
Magnetism has been known of since the beginning of recorded history. The 
ancient Athenians (600 BC) observed that a stone could attract pieces of iron. 
They called this stone ‘magnet’ because it was found in an area that was then 
called Magnesia (now in Turkey). They noticed that the pieces of iron attracted 
to this stone could also then attract other pieces. The magnet had ‘magnetised’ 
the iron it was in contact with. This process is called induction.

AS A MATTER OF FACT

The stone called ‘magnet’ is an iron oxide called magnetite. It has the 
chemical formula Fe3O4. It is black, metallic and quite hard. The stone 
has also been called a lodestone, which comes from ‘leading stone’. This 
refers to the fact that a magnet, if free to move, orients itself along a 
north–south line.

In trying to explain their observations of magnetism, the Greeks and Romans 
concentrated on the fact that magnets attract iron.

Lucretius in his book, De Rerum Natura (On the Nature of Things), said the 
following:

At this point, I will set out to explain what law of nature causes iron to be attracted 
by that stone which the Greeks call from its place of origin, ‘magnet’, because it 
occurs in the territory of Magnesia. Men look upon this stone as miraculous. 
They are amazed to see it form a chain of little rings hanging from it. Sometimes 
you may see as many as five or more in pendant succession swaying in the light 
puffs of air; one hangs from another, clinging to it underneath, and one derives 
from another the cohesive force of the stone. Such is the permeative power of 
this force.

.  .  .

 So much by way of preface  .  .  .  it will be easy to lay bare  .  .  .  the cause of the 
attraction of the iron. First, this stone must emit a dense stream of atoms which 
dispels by a process of bombardment all the air that lies between the stone and 
the iron. When this space is emptied and a large tract in the middle is left void, 
then atoms of the iron all tangled together immediately slide and tumble into the 
vacuum. The consequence is that the ring itself follows and so moves in with its 
whole mass. No other substance is so rigidly held together by the entanglement 
of its elemental atoms as cold iron, that stubborn and benumbing metal.

.  .  .

 Summing up in a few brief words, when the textures of two substances are 
mutually contrary, so that the hollows in the one correspond to the projections 
in the other .  .  . then connection between them is most perfect. It is even possible 
for some things to be coupled together, as though interlinked by hooks and eyes. 
And such, it would seem is the linkage between iron and magnet.

While Lucretius provides a picturesque model of a magnet’s attraction for 
iron, it does not explain later observations. From about AD 800 onwards, most 
cultures discovered that magnets always point in the same direction if free 
to spin. The magnetic compass became a necessary tool for navigation and 
exploration.

In ancient times, while the attraction of magnets for iron was an obvious 
phenomenon, the repulsion between magnets was either not observed or 
not considered as important as the attraction. The early ideas do not explain 
repulsion.

Induction is the process of 
producing magnetic properties 
in one object due to the presence 
of another object with magnetic 
properties.
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A magnet will line up with a 
line from north to south if it is 
allowed to spin freely.
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It was only much later that the attraction and the repulsion between two 
magnets were treated equally. This appreciation led Peter Peregrinus, a French 
soldier living in the thirteenth century, to propose three ideas.
1. The ends of the magnet, where the strongest attraction for iron occurred, 

were different from each other.
2. When the ends were brought together, the two like ends repelled each other.
3. The two unlike ends attracted each other.

The end of the magnet that pointed towards the north was called the north-
seeking end, or north end for short. The other end was called the south end.

These simple ideas were forgotten during the Middle Ages. In the sixteenth 
century, Dr Gilbert, a physician to Queen Elizabeth I, developed the same 
ideas. He also found that a freely suspended magnet dipped down at an angle 
to the horizontal, and that this angle varied with latitude. He explained these 
observations by suggesting that Earth contained a magnet.
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A magnet compass not only aligns itself 
along a line from north to south, it also 
dips downwards at an angle that varies 
with latitude. At a region near the South 
Geographic Pole, called the South Magnetic 
Pole, it actually points vertically downwards.

Today, Gilbert’s idea of a solid magnet inside Earth is rejected because 
Earth’s crust does not contain sufficient iron for the measured strength of 
Earth’s magnetism. Also, much of Earth’s core is molten liquid. A satisfactory 
explanation is still being sought of the origin of Earth’s magnetism.

A compass needle is lined up by Earth’s magnet. The south-seeking end of the 
needle points torwards geographic south. But because unlike ends attract, this 
end of Earth’s magnet must be a magnetic north end.
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S

south end of Earth’s
magnet

north end 
of Earth’s magnet

north

south

Although Gilbert’s work was a major breakthrough, his concept of how mag-
nets attracted the iron was very similar to that of Lucretius:

Magnetic force is something animate, it imitates a soul, nay, it surpasses the 
human soul. It sends forth its energy without error  .  .  .  quick, definite, constant, 
directive, imperant, harmonious. The magnet emits an effluvium which reaches 
out to the attracted body as a clasping arm and draws it to itself.

The end of the magnet 
marked ‘S’ is called the south 
end of the magnet because 
it points generally towards 
geographic south.
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Like ends repel; unlike ends 
attract.
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Magnetic fields
It was only when Michael Faraday (1791–1867) suggested the concept of a 
magnetic field that a useful model appeared. The magnetic field was described 
as a property of the space around a magnet, so that if a piece of iron was in that 
space it would experience a force. The lines typically drawn around a magnet 
represent the direction of this field, and their closeness, its strength. The lines 
are imaginary; they are just an aid in visualising a very abstract, but useful con-
cept. A picture (or diagram) of iron filings around a magnet is an effective rep-
resentation of a magnetic field.

There are rules for drawing field lines. These are listed below.
Each field line is a continuous loop that leaves the north end of the magnet, 
enters at the south end and passes through the magnet back to the north 
end.
Field lines do not intersect.
The direction of the magnetic field at a point is along the tangent to the field 
line.
The closeness of the lines represents the strength of the magnetic field.
Magnets can be designed to produce fields of different shapes. A horseshoe 

magnet with the ends adjacent produces a strong and even field between the 
ends. A circular magnet with a north end in the middle produces a radial field 
that points outward all the way around. This design is used in loudspeakers.

Differently shaped magnetic fields can be created by arranging the north and 
south ends of the magnet, as shown by (a) a horseshoe magnet and (b) a circular 
magnet.

(a) (b)

N NS

S
Horseshoe magnet Circular magnet

Some magnets have stronger fields than others. The strength of a magnetic 
field is measured in tesla. The strength of Earth’s magnetic field at its surface is 
quite small, about 10−4 tesla or 0.1 millitesla (0.1  mT). The strength of a typical 
school magnet is about 0.1  T. A fridge magnet is about 30  mT. The strongest 
permanent magnetic fields typically produced have field strengths of about 
1.0  T.

AS A MATTER OF FACT

Pigeons and honey bees have been found to have small fragments of 
magnetite in their bodies. Earth’s magnetic field exerts a force on these 
creatures. It is possible the pigeon or honey bee is able to detect the force 
and use it to navigate across Earth’s surface.

A magnetic field describes the 
property of the space around a 
magnet that causes an object in that 
space to experience a force due only 
to the presence of the magnet.

(a) A magnetic field can be 
represented by the direction 
and closeness of field lines 
on a page. (b) Closer lines 
represent increased strength.
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(a)

(b)
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Magnetic effect of a current
Hans Christian Oersted, like many others at the time (1820), thought there 
was a connection between electricity and magnetism. He placed a wire carry- 
ing a current over a magnetic compass and saw that the needle deflected. 
He then placed the wire under the compass and the needle deflected in the 
opposite direction. Log in to www.jacplus.com.au to locate the Magnetic field 
around a wire applet weblink for this chapter.

(a) Switch open in circuit, and (b) switch closed in circuit. To achieve maximum 
deflection, the wire should be placed in line with the magnetic needle before the 
current is turned on.

(a)

N
N

wire (b)

N

N

wire

Deflection of a compass needle means there is a magnetic field associated 
with the current, which causes the needle to line up with it. Using a compass, 
the field around a current in a wire can be mapped.

To represent current and its magnetic field often requires a three-dimensional 
view. To achieve this on a flat two-dimensional page, a convention is adopted. 
The symbol of a circle with a dot in the middle is used to represent a magnetic 
field coming out of a page. A circle with a diagonal cross is used to represent a 
magnetic field going into the page.

Magnetic fields going into the page (from B) and coming out of the page (from A)
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The symbols described on the previous page are designed to suggest in the 
instance on the right the point of an arrow coming towards the reader and, in 
the instance on the left, the feathers of the arrow going away from the reader.

The right-hand-grip rule
If the current is reversed, the magnetic field changes to the opposite direction. 
A rule is therefore needed so that the direction of the field can be determined 
in a variety of different situations.

A convenient rule is the right-hand-grip rule. The wire carrying the current is 
grabbed by the right hand, but the thumb must point in the direction that con-
ventional current flows in the wire. (Remember: conventional current flows 
from the positive terminal to the negative terminal.) The fingers then will wrap 
around the wire in the direction of the magnetic field.

Applying the right-hand-grip rule to a loop of wire shows that the magnetic 
field comes in on one side of the loop and out of the other side, all the way 
around the loop. Joining loops together results in a solenoid. The magnetic 
fields from each loop add together to produce a stronger magnetic field.

(a) (b)

I

I

I

I

Applying the right-hand-grip 
rule to each part of the loop 
reveals that at all points of 
the loop the magnetic field is 
curving in the same direction.

If the loops are very close together, the field lines within the coil are parallel 
to the axis of the coil. The field lines then emerge from one end of the sol enoid, 
curve around and enter the other end of the solenoid, completing the path for 
the field lines. The shape of this field is similar to that of a bar magnet. The 
ends of the solenoid can be labelled north and south. The field emerges from 
the north end. Looking from this end along the axis, the current is seen to be 
travelling anticlockwise. The other end is opposite.

Using the right-hand-grip rule 
with a solenoid

A B

From A From B

I I

If a right hand holds the wire 
with the thumb pointing in the 
direction of the conventional 
current, the fingers curl around 
the wire in the direction of the 
magnetic field.

I

magnetic field (B)

A solenoid is a coil of wire wound 
into a cylindrical shape.
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Revision question 6.1

Use the right-hand-grip rule to determine the direction of the magnetic field at 
point X in the following diagrams.

(a)

X

I

(b)

X
current into

page

In 1823 an English electrical engineer, William Sturgeon, found that when 
he placed an iron rod inside a solenoid, it greatly increased the strength of the 
magnetic field of the electric current to the point where it could support more 
than its own weight. Sturgeon had invented the electromagnet. He ultimately 
built a 200  g electromagnet with 18 turns of copper wire that was able to hold 
4  kg of iron with current supplied by one battery.

By placing an iron core inside a solenoid, Sturgeon had made a magnet 
that could be turned on and off at the flick of a switch, and made stronger by 
increasing the current. His invention has many applications. In a wrecking 
yard, for example, electromagnets are used to separate metals containing iron 
from other metals.

Car parts being lifted by an electromagnet in a car wrecking yard

The difficulty with using iron in an electromagnet is that when the current is 
turned off, the iron loses its magnetism. However, by adding carbon to the iron 
to produce an alloy, the magnetism is not lost when the current is turned off — 
a permanent magnet has been made. Stronger and more long-lasting  magnets 
are made with different combinations of elements. The common ‘alnico’ 
 magnets in schools are made from iron (54%), nickel (18%), cobalt (12%), alu-
minium (10%) and copper (6%).

An electromagnet is a temporary 
magnet produced when a solenoid 
wound around an iron core carries 
an electric current.
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Recent magnetic developments include the flexible fridge magnet, where 
microscopic particles of magnetite are mixed with a molten plastic and placed 
in a magnetic field while the plastic solidifies, and neodymium magnets, which 
contain the elements neodymium and boron in addition to iron. This produces 
a very high magnetic field strength.

Differences between magnetic fields
In the section headed ‘Magnetic fields’ (page 148), the pictures of the different 
magnetic field configurations show that there are regions in the space around 
the magnets where the lines are close together, so the field strength is high. 
In regions where the lines are further apart, the field strength is low. This is in 
contrast to the diagrams in the section ‘Magnetic effect of a current’ (page 149), 
where the lines are evenly spaced. The latter are examples of uniform fields, 
whereas the former are examples of fields that are non-uniform, meaning they 
vary in strength and direction through the space.

AS A MATTER OF FACT

The strength of a magnetic field 1.0  cm from a wire carrying 100  A is about 
2.0  mT. The small currents in the nerves of the human body produce 
magnetic fields of about 10−11  T. Electromagnets used in research have a 
short-term strength of about 70  T, which requires a momentary current of 
15  000  A.

The magnetic field around the human heart is about 5 × 10−11  T, about 
one millionth of Earth’s magnetic field. To measure fields of this size, it 
is necessary to use a magnetically shielded room and a very sensitive 
detector called a SQUID (a Superconducting QUantum Interference 
Device) that can measure fields down to 10−14  T. The magnetocardiogram 
produced is a useful diagnostic tool.

Explaining magnetism
The solenoid provides a model for the magnetism in a magnet and the 
iron rod. The shapes of the magnetic fields of a solenoid and of a magnet 
are identical. The magnetic field in the solenoid is produced by a current 
travelling in a circle, and the magnetic field is at right angles to the plane of 
the circle.

Electrons travel around the nucleus of an atom in circlelike paths, so each 
electron must produce its own magnetic field. In most atoms the paths of the 
electrons are randomly oriented, so their magnetic fields cancel out. However, 
the paths of a few electrons in an iron atom always line up. These are shielded 
by outer electrons, so they are not disturbed by other atoms. In this way each 
iron atom can act as a little magnet.

When there is a current flowing through a solenoid with an iron core, the 
magnetic field lines up all the atoms in the iron core so their magnetic fields 
all point in the same direction. This creates a very strong field. However, when 
the current is turned off, the motion of the atoms rapidly produces a random 
rearrangement due to their temperature.

In artificial magnets (e.g. fridge magnets) other elements are added to iron 
to hold the iron atoms in place while they are lined up by another magnetic 
field, so they stay lined up. This produces a permanent magnet. The crystal 
structure of magnetite forces its atoms to line up.
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AS A MATTER OF FACT

In a piece of iron, groups of nearby atoms line up together throughout the 
metal into regions called magnetic domains. When the iron is placed in 
a magnetic field, the domains that are already lined up with the external 
field increase in size as other domains shrink.

(a) The magnetic fields of adjacent iron atoms align themselves in local 
areas called domains. (b) Domains in a piece of iron exposed to a magnetic 
field, acting to the right

(a)

(b)

Comparing gravitational, electric and 
magnetic fields
Gravitational, electric and magnetic fields are all properties of the space around 
an object, whether the object is a mass, a charge or a magnetic pole. Lines are 
used to show the direction of the field, that is, the direction a test object would 
move; the strength of the field is shown by the density of the lines. For some 
field diagrams, it is not possible to tell the type of field simply by looking at the 
diagram.

Field diagrams

For example, field diagram (a) could show either a gravitational field around 
a mass or an electric field around a negative point charge. It could not be a 
magnetic field, as even though it might look like the field near the south pole of 
a magnet, there would be a north pole not too far away.

(a) (b)
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Similarly, field diagram (b) could show either an electric field around two oppo-
site charges or a magnetic field around north and south poles. However, it could 
not be a gravitational field, because mass does not come in two opposite versions.

Magnetic force on an electric current
Once the technology of electromagnets was developed, very strong magnetic 
fields could be achieved. This enabled the reverse of Oersted’s discovery to be 
investigated: what is the effect of a magnetic field on a current in a wire?

In Oersted’s experiment the magnetic field due to the current exerts a force 
on the magnetic field of the compass. So, according to Newton’s Third Law of 
Motion, the compass exerts an equal and opposite force on the current. What 
is the size of this force and in what direction does it act?

Observations of the magnetic force applied to the current-carrying wire 
show that:

if the strength of the magnetic field increases, there is a larger force on the 
wire
if the magnetic field acts on a larger current in the wire, there is a larger force
if the magnetic field acts on a longer wire, there is a larger force
it is only the component of the magnetic field that is perpendicular to the 
current that causes the force
if there are more wires in the magnetic field, there is a larger force.
Combined, these findings can be expressed as:
  magnetic force on a current (F  ) = number of wires (n) × current in each wire 

(I  ) × length of wire (l  ) × strength of the magnetic field (B),  
or

 F = n × I × l × B.

The units are expressed as:
1 newton = 1 × 1 ampere × 1 metre × 1 tesla.

When the magnetic field is perpendicular to the direction of the current (and 
hence the length vector) in a single wire, the magnitude of the force is given by:

F = IlB.
When the magnetic field is not perpendicular to the direction of the current, it 

is important to remember that the force on the wire is less. In fact, if the magnetic 
field is parallel to the direction of the current, the force on the wire is zero. That is 
because the component of magnetic field perpendicular to the current is zero.

Sample problem 6.1

If a straight wire of length 8.0  cm carries a current of 300  mA, calculate the 
magnitude of the force acting on it when it is in a magnetic field of strength 
0.25  T if:
(a) the wire is at right angles to the field
(b) the wire is parallel with the field.
(a) The magnetic field is perpendicular to the direction of current.

 F = IlB
 = 3.00 × 10−1  A × 8.0 × 10−2  m × 0.25  T
 = 6.0 × 10−3  N

(b) The magnetic field is parallel to the direction of current. Therefore the 
component of magnetic field that is perpendicular to the current is zero.

 F = IlB
 = 3.00 × 10−1  A × 0  m × 0.25  T
 = 0
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Revision question 6.2

(a) Calculate the force on a 100  m length of wire carrying a current of 250  A 
when the strength of Earth’s magnetic field at right angles to the wire is 
5.00 × 10−5  T.

(b) The force on a 10  cm wire carrying a current of 15  A when placed in a 
 magnetic field perpendicular to B has a maximum value of 3.5  N. What is the 
strength of the magnetic field?

If the magnetic field is pointing to the right across the page, and the cur-
rent is going down the page, the direction of the magnetic force is up, out of 
the page. The direction of this force will be important in applications such as 
meters and motors, so it is necessary to have a rule to determine the direction 
of the force in a variety of situations. There are two alternative hand rules com-
monly used. These are described below.

Left-hand rule
The left-hand rule applies as follows:

the index finger, pointing straight ahead, represents the magnetic field (B )
the middle finger, at right angles to the index finger, represents the current (I )
the thumb, upright at right angles to both fingers, represents the force (F ).
Lock the three fingers in place so they 

are at right angles to each other. Now 
rotate your hand so that the field and cur-
rent line up with the directions in your 
problem. The thumb will now point in the 
direction of the force.

force (F ) magnetic
field (B)

current (I)

Left-hand rule for determining the direction 
of the magnetic force of a magnetic field 
on a current

Right-hand-slap rule
The right-hand-slap rule applies as follows:

the fingers (out straight) represent the magnetic field (B)
the thumb (out to the side of the hand) represents the current (I )
the palm of the hand represents the force (F ).
Hold your hand flat with the 

fingers outstretched and the thumb 
out to the side, at right angles to your 
fingers. Now rotate your hand so that 
the field and current line up with the 
direction in your problem. The palm 
of your hand now gives the direction 
of the force, hence the name.
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Magnetic propulsion
When a current flows along the closest rail (the lower of the two rails in the 
figure at left, through the conductor rod and back to the power supply, the 
conductor will experience a force to the right due to the magnetic field. This 
force will make the conductor accelerate. If there is little friction, it can move 
at high speeds.

Meters
In the electrical meter illustrated in 
the figure at right, the force on the 
wire BA is out of the page. The cur-
rent travels around to D and then to 
C, so the force on wire DC is into the 
page. The two forces are the same 
size because the strength of the mag-
netic field is the same on both sides 
of the coil, the current through the 
coil is the same at all points and the 
lengths BA and DC are the same. 
However, the forces are in opposite 
directions. The net force is therefore 
zero. However, the forces do not act 
through the centre of the coil, so the 
combined forces have a turning 
effect. The turning effect of the forces 
is called a torque. The magnitude of 
the torque on a coil is the product of 
the force applied perpendicular to 
the plane of the coil and the distance between the line of action of the force 
and the shaft or axle. 

If a spring is attached to the axle, the turning effect of the forces unwinds 
the spring until the spring pushes with an equal torque. A pointer attached to 
the axle measures the size of the torque, which depends on the size of the cur-
rent. The larger the current through the meter, the larger the magnetic force 
and torque on the coil and the further the spring and the pointer are pushed 
back to achieve balance. Spiral springs have the fortunate property that the 
deflection of the pointer is proportional to the torque. This means that the 
scale on the meter can be linear, or evenly spaced.

DC motors
A DC motor (a simplified example of which is given in 
the figure at left) uses the current from a battery flowing 
through a coil in a magnetic field to produce continuous 
rotation of a shaft. How is this done?

A first attempt at a design might be to remove the 
restoring spring that is used in a meter.

When a coil is in position 1 (as shown in the top  
left figure on the opposite page), the forces will make it 
rotate. As the coil rotates (position 2) the forces remain 
unchanged in size and direction. This is because the 
magnetic field and the current in the wire are still the 
same size and in the same direction. However, their 
lines of action are closer to the axle, so they have less 

A metal conductor rod rolling 
along two rails
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turning effect. When the coil reaches position 3, at right angles to the 
magnetic field, the forces are still unchanged in size and direction, but in 
this case the lines of action of the forces pass through the axle and have 
no turning effect. Since the coil was already moving before it got to pos-
ition 3, the momentum of its rotation will carry it beyond position 3 to 
position 4(a). In position 4(a) the current is still travelling in the same direc-
tion, so in this position the forces will act to bring the coil back to position 3.

Force on a coil in a DC motor
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If this was the design of a DC motor, the coil would turn 90° and then stop! If 
the coil was in position 3 when the battery was first connected, the coil would 
not even move.

So, if the motor is to continue to turn, it needs to be modified when the coil 
reaches position 3. If the direction of the forces can be reversed at this point, 
as shown in position 4(b), the forces will make the coil continue to turn for 
another 180°. The coil will then be in the opposite position to that shown for 
position 3. The current is again reversed to complete the rotation.

The current needs to be reversed twice every rotation when the coil is at 
right angles to the magnetic field.

This reversal is done with a commutator. The commutator consists of 
two semicircular metal pieces attached to the axle, with a small insulating 
space between their ends. The ends of the coil are soldered to these metal 
pieces.

Wires from the battery 
rest against the commu-
tator pieces. As the axle 
turns, these pieces turn 
under the battery con-
tacts, called brushes. 
This enables the cur-
rent through the coil to 
change direction every 
time the insulating spaces 
pass the contacts.

Brushes are often small 
carbon blocks that allow 
charge to flow and the 
axle to turn smoothly.
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A DC motor is a device used to turn electrical energy into kinetic energy, 
usually rotational kinetic energy. As an energy transfer device of some indus-
trial significance, there are some important questions to be asked about the 
design for a DC motor. Are there some starting positions of the coil that won’t 
produce rotation? How can this be overcome? Can it run backwards and for-
wards? Can it run at different speeds? Log in to www.jacplus.com.au to locate 
the DC motor applet weblink for this chapter.

AS A MATTER OF FACT

The principle of the electric motor was proposed by Michael Faraday in 
1821, but a useful commercial motor was not designed until 1873. Direct 
current (DC) motors were installed in trains in Europe in the 1880s.

Magnetic force on charges
Electric current consists of electrons moving in a wire. A magnetic field acts 
on the electrons and pushes them sideways. This force then pushes the nuclei 
in the wire, and the wire moves. If the moving electrons were in a vacuum, free 
of the wire, the magnetic field would still exert a force at right angles to their 
velocity. What would be the effect of this force on a freely moving electron?

When an electron is moving across a magnetic field, it experiences a side-
ways force, which deflects the movement of the electron. The electron now 
moves in another direction given by the hand rule; however, it is still moving at 
right angles to the magnetic field, so the strength of the force is unchanged. 
The direction of the force will again be at right angles to the electron’s motion, 
and deflecting it again. The deflecting force on the moving electron will be 
constant in size and will always be at right angles to its velocity. This results in 
the electron travelling in a circle.

The magnetic force is always at right angles to the direction of the charge’s 
motion. So the magnetic force cannot increase the speed on the charge; it can 
only change its direction at a constant rate.

The mass spectrometer, the electron microscope and the synchrotron are 
instruments that use a magnetic force in this manner.

So what is the radius of the circle? How does it depend on the strength of the 
magnetic field, the speed of the charge and size of the charge?

The magnitude of the magnetic force on a current-carrying wire is given by:
F = IlB (1)
Imagine a single charge, q, travelling along at speed, v. The charge travels 

through a distance, or length, in a time of t seconds given by:
length = speed × time
       l = vt. (2)
The electric current is given by:

current
charge

time
=

      I = q
t

. (3)

Substituting equations (2) and (3) into (1):

F
q
t

vt B= × ×

⇒ F = qvB.
Does this relationship make sense?
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What do we observe? What does the formula predict? Match

If the charge is stationary, the 
current is zero, so no force.

If v = 0, then F = 0. Yes

A stronger magnetic field will 
deflect the charge more.

Force is proportional to the field. Yes

The magnitude of the net force on the charged particle as it moves in the 
magnetic field is:

Fnet = ma.

In this case the only significant force is the magnetic force, F = qvB.

⇒ qvB = ma

Because the acceleration is centripetal and constant in magnitude, its magni-

tude can be expressed as =a
v
r

   
2

, where r is the radius of the circular motion.

⇒ =qvB
mv

r
   

2

The expression for the radius is therefore:

=r
mv
Bq

    .

Does this relationship make sense?

What do we observe? What does the formula predict? Match

Hard to turn heavy objects The heavier the mass, the larger the 
radius

Yes

Hard to turn fast objects The faster the object, the larger the 
radius

Yes

The larger the force, the 
smaller the radius

The stronger the field, the smaller 
the radius; the larger the charge, the 
smaller the radius

Yes

Note that because the direction of the magnetic field is always at right angles 
to the direction in which the charged particles are moving, the magnetic field 
cannot make the particles go faster — it can only change their direction. In this 
context, magnetic fields are not ‘particle accelerators’.

Sample problem 6.2

An electron travelling at 5.9 × 106 m s−1 enters a magnetic field of 6.0 mT. What 
is the radius of its path?
m = 9.1 × 10−31  kg, q = 1.6 × 10−19 C, v = 5.9 × 106  m  s−1, B = 6.0  mT

r
mv
Bq

   

    
9.1   10 kg    5.9   10 m  s

6.0   10 T   1.6   10 C

   5.6   10 m    5.6 mm

31 6 1

3 19

3

=

= × × ×
× × ×

= × =

− −

− −

−

Revision question 6.3

Calculate the speed of an electron that would move in an arc of radius 1.00 mm 
in a magnetic field of 6.0  mT.

Solution:
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(a)

β

α
(c)

particles accelerated
into magnetic field

magnet

sample
injected

(b)

vapourising
heater

sample ionised
by electron beam

beam of
charged
particles

magnetic field
separation

projector
lens

image

specimen

(e)
(d)

(a) and (b) A mass spectrometer. (c) Positive alpha 
particles are deflected up and beta particles are deflected 
down. (d) and (e) An electron microscope.

AS A MATTER OF FACT

What happens to a stationary electron in a magnetic field? Surprisingly, 
there is no force! The electron is not moving, so there is, in effect, no cur-
rent, and therefore no magnetic force. Similarly, the faster the electron 
moves, the stronger the force. This is a strange situation — that the size 
of a force on an object is determined by how fast that object is travelling. 
This raises an interesting conundrum: if you were sitting on an electron 
moving through a magnetic field, what would you observe? This question 
can only be resolved by Einstein’s Special Theory of Relativity.
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Crossed electric and magnetic fields
For mass spectrometers and electron microscopes to work, the charged par-
ticles all need to be travelling at the same speed This is because the radius of 
the path in a magnetic field for a particle with a given charge and mass depends 
on the particle’s speed. 

In 1898, Wilhelm Wien (after whom Wien’s Law in thermodynamics is 
named) was investigating the charged particles that are produced when elec-
tricity is passed through gases. To investigate their speed and their charge, he 
set up a magnetic field to deflect the beam of charged particles in one direc-
tion, and an electric field to deflect the beam in the opposite direction. For the 
charged particles that were undeflected, the magnetic force must have been 
balanced by the electric force.

The electric force on a charge in an electric field is F = qE, and the magnetic 
force on a moving charge is F = qvB. Equating these formulae gives

qE = qvB
and cancelling q gives

E
B

v = .

This configuration is now called a Wien filter.

AS A MATTER OF FACT

The aurorae at the North Pole and South Pole are
glorious displays of waves of coloured light high
in the atmosphere. They are produced when 
charged particles ejected by the Sun 
enter Earth’s magnetic field. 
The particles spiral down 
to the pole, producing 
an amazing display of 
light as they move in 
smaller and smaller circles
from the increasing
magnetic field.

Aurora Australis, seen from the 
International Space Station

N

S

charged 
particles

Charged particles entering  
Earth’s magnetic field

Overview
At the end of chapter 5, gravitational and electrical interactions are compared 
using four interrelated concepts: force, field, energy and potential. This chapter 
has not taken that approach for two reasons.

Firstly, although gravitational and electrical interactions involve point 
objects and scalar properties, the magnetic interaction at its most fundamental 
is about the magnetic force between two currents. Currents are not point 
objects; they are vectors. The study of force, field, energy and potential in a 
magnetic context is too demanding for a secondary Physics course.

Secondly, looking at magnetism from the practical viewpoint of designing 
a motor helps us to better understand other technological applications of the 
concepts involved. The understanding of magnetism has enabled the design 
of devices such as the electric motor, which we have seen in this chapter, and 
generators and transformers, which are covered in the next two chapters.

–

+

E

B

+ v =v = E
B

v ≠v ≠ E
B

v ≠v ≠ E
B

A Wien filter (also known as a 
velocity selector)
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Chapter review
Unit 3 Magnetic fields and 

forces

Sit Topic test

AOS 1

Topic 3

Summary
 ■ The force exerted by magnets on other magnets and 

certain elements, including iron, can be explained in 
terms of a magnetic field. The strength of a magnetic 
field is measured in tesla (T).

 ■ An electric current in a wire produces a magnetic 
field. The direction of the magnetic field around a 
long straight current-carrying wire is given by the 
right-hand-grip rule. If the right hand grips the cur-
rent-carrying wire with the thumb pointing in the 
direction of the current, the fingers curl around the 
wire in the direction of the magnetic field.

 ■ A magnetic field exerts a force on a wire carrying an 
electric current. When the magnetic field and electric 
current are perpendicular to each other, the magnitude 
of the force can be calculated using the formula F = IlB.

 ■ The direction of the force applied by a magnetic field 
on a straight current-carrying wire can be determined 
by the right-hand-slap rule. The hand is held flat with 
the thumb at right angles to the fingers. The thumb 
points in the direction of the current, and the fingers 
in the direction of the magnetic field. The direction of 
the force applied to the wire by the magnetic field is 
perpendicularly outwards from the palm.

 ■ In a DC motor, a magnetic field is used to rotate a coil 
of current-carrying wire around a shaft. The magnetic 
force produces a torque that turns the coil.

 ■ A commutator is used in a DC motor to reverse the 
current passing through the coil twice during each 
rotation. This ensures that the coil keeps rotating in 
one direction.

 ■ A magnetic field affects moving charge as if it were 
an electric current in a wire.

 ■ The force by a magnetic field on a moving charged 
particle is always at right angles to the direction the 
particle is heading. The force constantly changes the 
direction of travel, producing a circular path.

 ■ The size of the magnetic force on a moving charged 
particle is equal to qvB, where q and v are the charge 
and speed of the particle respectively and B is the 
strength of the magnetic field.

 ■ The radius, r, of the curved path of a charged particle 
in a magnetic field is given by r = mv

Bq
.

Questions
Magnetic fields
 1. How would you use a magnet to test whether or not 

a piece of metal was magnetic?
 2. How could naturally-occurring magnets have been 

formed?

 3. Why do both ends of a magnet attract an iron nail?
 4. What is the polarity of Earth’s magnetic field at the 

magnetic pole in the southern hemisphere?
 5. When current is connected to a solenoid containing 

two iron rods side by side, the two rods move apart. 
Explain why this happens.

 6. Draw the magnetic field lines for the following 
items (shown below):
(a) a loudspeaker magnet
(b) a horseshoe magnet.

S N

(b) Horseshoe magnet(a) Loudspeaker

N

N

SN N

 7. In Oersted’s experiment, the compass needle 
initially points north–south. What would happen if 
the current in the wire above the needle ran:
(a) west–east
(b) east–west?

 8. Use the right-hand-grip rule to determine the 
direction of the magnetic field at point X in the 
following diagrams.

(a)

X I

(b)

X
I

(c)

X

current out 
of page

 9. Copy the following diagrams and use the right-
hand-grip rule and the direction of the magnetic 
field at X to determine the direction of the current 
in the wire in each case.

(b)

X

I

(c)

X

I

(a)

X I

(d)
X I

(e)

I
X
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 10. Use the right-hand-grip rule to determine the 
direction of the magnetic field at W, X, Y, Z in 
the following diagrams. Figure (a) represents a 
circular loop of wire with a current and figure (b) 
represents a solenoid.
(a)

X W

Y

Z

(b)

W

Y

Z

X

Magnetic force
 11. Use the answer 

key provided 
to indicate the 
direction of 
the force of the 
magnetic field 
on the current-
carrying wire in 
diagrams (a) to 
(h) below.

I

B

(a)

I

B

(b)

I

B

(c)

I

B(d)

I

B
(e)

I

B
(f)

I
B(g)

I

B(h)

 12. Wires A and B are parallel to each other and carry 
current in the same direction.
(a) Draw a diagram to represent this situation, 

and determine the direction of the magnetic 
field at B due to wire A.

N

S

W E

into page

Answer key

out of page

(b) This magnetic force will act on the current in 
wire B. What is the direction of the force by 
wire A on wire B?

(c) Now determine the direction of the magnetic 
field at A due to wire B and the direction of 
the force by wire B on wire A.

(d) Is the answer to (c) what you expected? Why? 
(Hint: Consider Newton’s laws of motion.)

 13. Calculate the size of the force on a wire of length 0.05  m 
in a magnetic field of strength 0.30  T if the wire is at 
right angles to the field and it carries a current of 4.5  A.

 14. Calculate the size of the force of a magnetic field of 
strength 0.25  T on a wire of length 0.30  m carrying a 
current of 2.4  A at right angles to the field.

 15. Calculate the size of the force exerted on a 
loudspeaker coil of radius 1.5  cm and 500 turns 
which carries a current of 15  mA in a radial 
magnetic field of 2.0  T. (Hint: Consider what aspect  
of the circle takes the place of l in this question.)

 16. Calculate the size of the force on a wire carrying a 
current of 1.8  A at right angles to a magnetic field of 
strength 40  mT, if the length of the wire is 8.0  cm.

 17. Design a compass without a permanent magnet.
 18. Describe a method to use a moving charge to 

determine the direction of a magnetic field.
 19. How could a moving electron remain undeflected 

in a magnetic field?
 20. Describe and discuss the force of Earth’s magnetic 

field on a horizontal section of a power line that 
runs in an east–west direction.

 21. Can a magnetic field move a stationary electron?
 22. (a)  A beam of electrons is directed at right angles 

to a wire carrying a conventional current from 
left to right. What happens to the electrons?

(b) A beam of electrons is directed parallel to 
the same wire with the conventional current 
travelling in the same direction. What happens 
to the electrons?

 23. An electron moving north enters a magnetic field 
that is directed vertically upwards.
(a) What happens to the electron?
(b) If the electron’s motion was inclined upwards 

at an angle, as well as travelling north, what 
would be the path of the electron?

DC motors
 24. Describe how a DC motor works.
 25. What is the purpose of each of the following in a 

DC motor?
(a) The magnet
(b) The brushes
(c) The commutator (mention three aspects)
(d) The large number of turns of wires

 26. Look at the simplified DC motor on page 156.
(a) Are there some starting positions of the coil 

that won’t produce rotation? How can this be 
overcome (Hint: Look at the figures on page 157.)
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(b) Can the DC motor run backwards and 
forwards?

(c) Can it run at different speeds? If so, how?
 27. (a)  Would a DC motor work if it was connected 

to an alternating current (AC) power 
source?

(b) What if there was no commutator?
 28. Stronger magnetic fields can be obtained with an 

electromagnet. The same DC power source can 
supply current to the electromagnet as well as 
to the rotating coil. The two components of the 
circuit, the electromagnet and the rotating coil, 
can be connected to the power source in two 
different ways.
(a) What are these ways?
(b) How do you think the starting and 

operating characteristics of these two types 
will differ?

Charges in a magnetic field
 29. An electron travelling east at 1.2 × 105  m  s−1 

enters a region of uniform magnetic field of 
strength 2.4  T.
(a) Calculate the size of the magnetic force acting 

on the electron.
(b) Describe the path taken by the electron, giving 

a reason for your answer.
(c) Calculate the magnitude of the acceleration of 

the electron.
 30. (a)  What is the size of the magnetic force on an 

electron entering a magnetic field of 250 mT at 
a speed of 5.0 × 106  m  s−1?

(b) Use the mass of the electron to determine its 
centripetal acceleration.

(c) If a proton entered the same field with the 
same speed, what would be its centripetal 
acceleration?

 31. Determine the direction of the magnetic force 
in the following situations, using your preferred 
hand rule. Use the following terminology in your 
answers: up the page, down the page, left, right, 
into the page, out of the page.
(a) Magnetic field into the page, electron entering 

from left

X X X

X X X

X X X

(b) Magnetic field down the page, electron entering 
from left

N

S

(c) Magnetic field out of the page, proton entering 
obliquely from left

 32. An ion beam consisting of three different types 
of charged particle is directed eastwards into 
a region having a uniform magnetic field, B, 
directed out of the page. The particles making 
up the beam are (i) an electron, (ii) a proton and 
(iii) a helium nucleus or alpha particle. Copy 
the following figure and draw the paths that the 
electron, proton and helium nucleus could take.

ion beam

B

 33. In a mass spectrometer, positively charged ions 
are curved in a semicircle by a magnetic field to 
hit a detector at different points depending on 
the radius and mass. The ions enter the chamber 
at the top left corner, and curve around to hit the 
detector (see below). What should be the direction 
of the magnetic field for the spectrometer to work 
properly? Use the answers from question 32.

 34. Calculate the radius of curvature of the following 
particles travelling at 10% of the speed of light in a 
magnetic field of 4.0  T.
(a) An electron
(b) A proton
(c) A helium nucleus

 35. What magnetic field strength would cause an 
electron travelling at 10% of the speed of light to 
move in a circle of 10  cm?

 36. What strength of magnetic field would be needed 
to obtain a radius of 1000  m if an electron has 
momentum of 1.0 × 10−18  kg  m  s−1? (Assume the 
direction of the momentum of the electrons is 
perpendicular to the direction of the magnetic field.)

 37. The storage ring of the Australian Synchrotron 
has a radius of 34.4  m and the strength of the 
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magnetic field is 2.0  T. What is the momentum of 
an electron in the storage ring?

 38. Would the same configuration of crossed electric 
and magnetic fields shown on page 161 work for 
negatively charged particles?

 39. Design a velocity selector with a magnetic field 
down the page, assuming the charged particles are 
coming from the left.

 40. (a)  Calculate the speed acquired by an electron 
accelerated by a voltage drop of 100  V.

(b) The electron from part (a) enters a velocity 
selector with a magnetic field of strength 
6.0  mT. For what electric field strength would 
the electron be undeflected?

(c) If the plate separation for the electric field was 
5.0  cm, what is the voltage across the plates?



REMEMBER

Before beginning this chapter, you should be able to:

 ■ describe how a magnetic field exerts a force on a current

 ■ describe the operation of a simple DC motor, including 
the role of the commutator.

KEY IDEAS

After completing this chapter, you should be able to:

 ■ determine the amount of magnetic flux passing through 
an area

 ■ explain how a moving conductor in a magnetic field 
generates a voltage drop

 ■ describe how the magnetic flux through a rotating coil 
changes with time

 ■ explain how a rotating loop in a magnetic field generates a 
voltage that varies as a sine wave — that is, an AC voltage

 ■ determine the average induced voltage in a loop from 
the flux change and the time in which the change took 
place

 ■ determine the direction of the induced current in a loop, 
using Lenz’s Law

 ■ calculate the average induced voltage for more than one 
loop

 ■ describe and determine the following properties of an 
AC voltage: frequency, period, amplitude, peak-to-
peak voltage, peak-to-peak current, RMS voltage and 
RMS current

 ■ interpret RMS in terms of the DC supply that delivers the 
same power as the AC supply

 ■ describe the operation of an alternator with the use 
of slip rings to produce AC, and the operation of a 
generator with a split-ring commutator to produce 
fluctuating DC.

CHAPTER

7 Generating electricity

A generator inside a wind turbine
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Making electricity
Chapter 6 describes how a magnetic field exerts a force on a moving charge, 
either in a wire as part of an electric current or as a free charge. This chapter 
applies this idea to new situations to produce or generate electricity. In doing 
this, a new concept, magnetic flux, will be developed to explain how a gener-
ator works.

Generating voltage with a magnetic field
What should happen when a metal rod moves through a magnetic field? 
Imagine a horizontal rod falling down through a magnetic field as shown in 
the figure at left.

As the rod falls, the electrons and the positively charged nuclei in the rod 
are both moving down through the magnetic field. As was explained in the last 
chapter, the magnetic field will therefore exert a magnetic force on the elec-
trons, and on the nuclei.

In which direction will the magnetic force act on the electrons and the 
nuclei?

The hand rules from chapter 6 can be used for both the electrons and the 
nuclei, keeping in mind that the hand rules use conventional current, so elec-
trons moving down are equivalent to positive charges moving up.

The force on the electrons will be towards the far end of the rod, while the 
force on the nuclei will be to the near end of the rod, as is shown in the figure 
below.

+
+

+
+

N S

N S

+

–
– –

–

–

F

(a)

(b)

V

V

The magnetic field forces electrons to the far end of the falling rod.

The atomic structure of the metal restricts the movement of the positively 
charged nuclei. The negatively charged electrons, on the other hand, are free to 
move. The electrons move towards the far end of the rod, leaving the near end 
short of electrons and thus positively charged.

Not all electrons move to the far end. As the far end becomes more negative, 
there will be an increasingly repulsive force on any extra electrons. Similarly, 
there will be an increasingly attractive force from the positively charged near 
end, attempting to keep the remaining electrons at that end. This process is 
similar to the charging of a capacitor.

The movement of the metal rod through the magnetic field has resulted in 
the separation of charge, causing a voltage between the ends. This is called 
induced voltage. As long as the rod keeps moving, the charges will remain 

N SN S

V

A metal rod falling down 
through a magnetic field

Induced voltage is a voltage that is 
caused by the separation of charge 
due to the presence of a magnetic 
field.
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separated. As soon as the rod stops falling, the magnetic force is reduced to 
zero; electrons are then attracted back to the positive end and soon the elec-
trons in the rod are distributed evenly.

The charge in the moving rod is separated by the magnetic field, but the 
charge has nowhere to go. A source of voltage, an emf (electromotive force), 
has been produced. It is like a DC battery with one end positive and the other 
negative.

What determines the size of this induced emf? The size depends on the number 
of electrons shifted to one end. The electrons are shifted by the magnetic force 
until their own repulsion balances this force. So, the larger the magnetic force 
pushing the electrons, the more there will be at the end.

The size of this pushing magnetic force, as seen in chapter 6, depends on the 
size of the magnetic field and the current. In this case, the size depends on how 
fast the electrons are moving down with the rod (which is, of course, how fast 
the rod is falling). So the faster the rod falls, the larger the emf.

An expression for the induced emf can be obtained by combining the 
expression from the end of the last chapter for the force on a moving charge with 
the definition of voltage from book 1. When the rod is moving down with speed 
(v) each electron experiences a sideways force along the rod equal to Bqv. This 
force pushes the electron along the length (l) of the rod and so is doing work 
in separating charge. The amount of work done is equal to the force times the 
distance and so equals Bqvl and is measured in joules. However the definition 
of emf or the voltage drop across the rod is energy supplied per unit of charge, 
measured in joules per coulomb or volts. So the induced emf (ε) is given by 
Bqvl

q , which gives:

ε = Blv

where
ε is the induced emf measured in volts
B is the magnetic field strength in tesla
l is the length of the rod or wire in metres that is in the magnetic field 
v is the speed in metres per second at which the rod or wire is moving across 
the magnetic field.

Sample problem 7.1

A 5.0  cm metal rod moves at right angles across a magnetic field of strength 
0.25  T at a speed of 40  cm  s−1. What is the size of the induced emf across the 
ends of the rod?

  l = 5.0  cm = 5.0 × 10−2  m, v = 40  cm s−1 = 0.4  m  s−1, B = 0.25  T
ε = Blv

= 0.25  T × 5.0 × 10−2  m × 0.4  m  s−1

= 5.0 × 10−3  V = 5.0  mV

Revision question 7.1

At what speed would the rod need to move to induce an emf of 1.0  V?

Generating a current
Emfs can be used to produce a current. The experimental design illustrated in 
the first figure for ‘Generating voltage with a magnetic field’ (page 167) can be 
modified to produce a current by attaching a wire to each end of the metal rod 

An emf is a source of voltage that 
can cause an electric current to 
flow.

Solution:
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and connecting these wires outside the magnetic field. (See the figure at left.) 
Now the electrons have the path of a low-resistance conductor to go around to 
the positively charged end.

Once the electrons reach the positive end, they will be back in the magnetic 
field, falling down with the metal rod, and will again experience a magnetic 
force pushing them to the far end of the rod. The electrons will then move 
around the circuit for a second time.

The electrons will continue to go around as long as the wire is falling through 
the magnetic field. An electric current has been generated!

The source of a current’s electrical energy
Electric current has electrical energy. Where did this energy come from? 
Before the rod (discussed earlier) was released, it had gravitational potential 
energy. If it is dropped outside the magnetic field (see figure (b) below), this 
gravitational potential energy is converted into kinetic energy. If it is dropped 
inside the magnetic field (see figure (a) below), some electrical energy is pro-
duced. Since energy is conserved (that is, it cannot be created or destroyed), 
there must be less kinetic energy in the rod falling in the magnetic field. That is, 
the rod in the magnetic field is falling slower. Why?

N S

(a) (b)

kinetic energy

Distance fallen

gravitational
potential energy

E

Distance fallen

kinetic 
energy
electrical 
energy

gravitational
 potential
 energy

E

– –

–

(a) Inside the magnetic field, the gravitational potential energy of the falling rod is 
converted into both kinetic energy and electrical energy, whereas (b) outside the 
magnetic field it is converted only into kinetic energy.

The induced current in the falling rod means that when the electrons are 
in the rod they are moving in two directions — downwards with the rod and 
along the rod.

The downward movement produced the sideways force along the rod that 
keeps the current going. But if the electrons are also moving along the rod, how 
does the magnetic field respond to this?

The movement of electrons along the rod is also at right angles to the mag-
netic field so the field exerts a second force on the electrons. The direction of 
this force is once again given by the hand rule and is directed upwards. This 
magnetic force opposes the accelerating force of the weight of the rod. (See the 
figure at left.)

N S

+
+

+
+

direction of 
electron flow

–

–
––

–

–

The accumulated electrons 
at the far end of a rod move 
to the positive near end of the 
rod through the connecting 
wire.

N S
I

weight of rod

F 
magnetic
force on
falling electron

–

– –

magnetic 
force on rod

The magnetic force opposes 
the weight of the rod.
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The size of the upward magnetic force depends on the size of the current. 
This current will depend, in turn, on the size of the voltage between the ends of 
the rod. Voltage will increase as the rod moves faster.

When the rod first starts falling, the magnetic force opposing the weight is 
small, but as the rod falls faster the opposing magnetic force increases until 
it equals the weight of the rod. At this point the rod has reached a maximum 
steady speed. This situation is identical to the terminal velocity experienced by 
objects falling through the air.

As the metal rod falls through the magnetic field at constant speed, the loss 
in gravitational potential energy is converted to electrical energy as the gener-
ated emf drives the current through the resistance of the circuit.

This effect is difficult to demonstrate in practice. (A magnetic field large 
enough for the rod to achieve terminal velocity is too difficult to construct.) 
However, it is possible to drop a magnet through a cylindrical conductor. With 
a sufficiently strong magnet, measurable slowing-down against the accel-
eration due to gravity can be observed.

Faraday’s discovery of 
electromagnetic induction
Michael Faraday was aware of the magnetic effect of a current and he spent 
six years searching for the reverse effect — that is, the electrical effect of 
magnetism.

His equipment consisted of two coils of insulated wire, wrapped around a 
wooden ring. One coil was connected to a battery, the other to a galvanometer, 
a sensitive current detector. Faraday observed that the galvanometer needle 
gave a little kick when the battery switch was closed and a little kick the oppo-
site way when the switch was opened. The rest of the time, either with the 
switch open or closed, the needle was stationary, reading zero. The current was 
momentary, not the constant current he was looking for. What Faraday had 
observed came to be called electromagnetic induction.

switch

battery

galvanometer

0

+ –

When the switch in the battery circuit is opened or closed, there is a momentary 
current through the galvanometer.

Investigating further, Faraday found that using an iron ring instead of a 
wooden one increased the size of the current. He concluded that when the 
magnetic field of the battery coil was changing, there was a current induced in 
the other coil.

He therefore replaced the battery coil with a magnet. Moving the magnet 
through the other coil changed the magnetic field and produced a current. The 
faster the magnet moved, the larger the current. When the magnet was moved 
back away from the coil, current flowed in the opposite direction.

magnetic force

weight force

velocity of
magnet

A magnet falling through 
a metal tube falls with an 
acceleration less than 9.8  m s–2 
because it experiences a 
retarding magnetic force.

A galvanometer is an instrument 
used to detect small electric 
currents.

Electromagnetic induction is the 
generation of an electric current 
in a coil as a result of a changing 
magnetic field or as a result of 
the movement of the coil within a 
constant magnetic field.

Digital doc
Investigation 7.1
Inducing a current
doc-18544
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I
I

NNS NNS

(a) (b) 

Magnet (a) moving into a coil and (b) away again

If there was an induced current, then there must have been an induced emf. 
An emf gives energy to a charge to move it through the wire, and the resistance 
of the wire limits the size of the current. So it is more correct to say that the 
changing magnetic field induced an emf.

Magnetic flux
Magnetic flux is the amount of magnetic field passing through an area, such 
as a coil. It is the change in the magnetic flux that will help explain electromag-
netic induction.

The stronger the magnetic field going through an area, the larger the amount 
of magnetic flux. Similarly, the larger the area the magnetic field is going 
through, the larger the magnetic flux.

This is summarised in the definition of magnetic flux:
amount of magnetic flux (ΦB) = strength of magnetic field (B) × the area (A)

 ΦB = BA.

(a) (b) 

Area A

B

Magnetic flux is the amount of magnetic field passing through an area. In (a) it is the 
maximum BA; in (b) the value is less, as fewer field lines pass through the coil.

Magnetic flux is measured in webers. One weber (Wb) is the amount of 
magnetic flux from a uniform magnetic field with a strength of 1.0 tesla passing 
through an area of 1.0 square metre. The magnetic flux can also take on posi-
tive and negative values, depending on which side of the area the magnetic 
field is coming from.

Magnetic flux is a measure of the 
amount of magnetic field passing 
through an area. It is measured in 
webers (Wb).

Unit 3 Magnetic flux
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This description has assumed that the magnetic field is at right angles to 
the area, as shown in figure (a). If the magnetic field went through the area 
at an angle less than 90º (as shown in figure (b)), the amount of magnetic flux 
passing through the area would be less. In fact, if the magnetic field is parallel 
to the area, the amount of magnetic flux will be zero, as none of the magnetic 
field lines pass through the area from one side to the other.

A more correct definition of magnetic flux would therefore be:

amount of magnetic flux (ΦB) =  component of magnetic field  
strength perpendicular to the  
area (B⊥)  
× the area (A)

 ΦB = B⊥ × A.

Sample problem 7.2

Calculate the magnetic flux in each of the following situations.

B = 0.05 T

Area = 0.3 m2
(a) 

B = 0.2 T

(b) 

8 cm

B = 1.7 T

(c) 

15 cm

(a) ΦB = B⊥ × A
 = 0.05  T × 0.3  m2

 = 0.015  Wb
(b) First calculate area A. (Don’t forget to convert the radius to metres.)

 A = π r 2

 = π × (0.08  m)2

 = 0.020 106  m2 (Don’t round off the final answer.)

Now calculate the flux:
ΦB = B⊥ × A
 = 0.2  T × 0.020 106  m2

 = 0.004  Wb

(c) Note that the plane of the loop is parallel to the magnetic field,
 B⊥ = 0.

ΦB = B⊥ × A
 = 0 × A
 = 0  Wb

B

Zero magnetic flux, as no field  
lines ‘thread’ the loop

Solution:
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Revision question 7.2

Estimate the maximum amount of magnetic flux passing through an earring 
when placed near a typical school magnet.

Induced EMF
Now the concept of magnetic flux can be used to explain the induced emf. The 
two principles are described here.
1. An emf is induced in a coil when the amount of magnetic flux passing 

through the coil changes.
2. The size of the emf depends on how quickly the amount of magnetic flux 

changes.
These two statements can be written formally as:

t
emf , .average

Bε Φ= ∆
∆

This statement is known as Faraday’s Law. The word ‘average’ is included 
because the change in magnetic flux took place over a finite interval of time.

Lenz’s Law states: The direction of the induced current is such that its mag-
netic field is in the opposite direction to the change in magnetic flux. It can be 
incorporated in the above equation as a minus sign:

t
emf, .Bε Φ= −∆

∆
If the coil consists of several turns of wire, the equation can be generalised 

further:
N

t
emf, Bε Φ= − ∆

∆
where 
N is the number of turns in the coil.
In part (a) of the following figure there is no magnetic flux passing through the 
loop. When the magnet approaches the coil (figure (b)), there is an increase in 
the amount of magnetic field passing through it from left to right. The loop has 
experienced a change in the magnetic flux passing through it (c), and the direc-
tion of this change is from left to right. The direction of the induced magnetic 
field (d) from the induced current in the loop (e) will be such that its magnetic 
effect will oppose the change in the magnetic flux (c). This means its direction 
will be from right to left.

(a) (b) (c) (d) (e) 

NN N

before after change
in flux

induced
magnetic

field

induced current
(check using

right-hand-grip rule)

The loop (a) before and (b) after; (c) change in flux, (d) direction of induced field 
and (e) direction of current

To achieve an induced magnetic field from right to left, the induced current, 
using the right-hand-grip rule, must be travelling up the front of the loop.
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The coil responds in such a way as to keep its magnetic environment con-
stant. In this example, there is increasing flux from left to right, so the induced 
magnetic field goes from right to left. When the magnet is pulled back, the flux 
that is still going from left to right is decreasing this time, so the induced mag-
netic field adds to the existing flux to compensate for the loss, and this field 
points from left to right.

Sample problem 7.3

The rectangular loop shown takes 2.0  s to fully enter a perpendicular magnetic 
field of 0.66  T strength.
(a) What is the magnitude of the emf induced in the loop?
(b) In which direction does the current flow around the loop?

(a) First calculate the area of the loop.
A = 0.25  m × 0.3  m

= 0.075  m2

Now find the change in flux.
ΔΦB = ΦB final − ΦB initial
 = (BA)final − (BA)initial
 =  (0.66  T × 0.075  m2) − (0 T × 0.075  m2) 

(The initial field strength through the coil is zero.)
 = (0.05  T  m2) − (0  T  m2)
 = 0.05  Wb into the page

Finally, using Faraday’s Law:

emf, ε = 
N

t
BΦ− ∆

∆

 = −1 × 0.05 Wb
2.0 s

 = −0.025  V

So the magnitude of the induced voltage is 0.025  V.
 The minus sign is there to indicate that the induced emf opposes the 
change in magnetic flux.

(b) Change in flux = final − initial = flux into the page
 Direction of induced magnetic field = out of the page (Lenz’s Law)
 Direction of induced current = anticlockwise (right-hand-grip rule)

Revision question 7.3

A spring is bent into a circle and stretched out to a 
radius of 5.0  cm. It is then placed in a magnetic field 
of strength 0.55  T. The spring is released and con-
tracts down to a circle of radius 3.0  cm. This happens 
in 0.15 seconds.
(a) What is magnitude of the induced emf?
(b) In what direction does the current move?

Unit 3

Do more
Magnetic flux and 
Lenz’s Law

AOS 2

Topic 1

Concept 4

0.25 m

0.3 m B = 0.66 T

Solution:
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Rotating a loop
A magnet moving in and out of a coil to generate a current is not a very efficient 
means of converting the mechanical energy of the moving magnet into elec-
trical energy of a current in the coil. It does not have much technological 
potential; an alternative is needed.

Another way of changing the amount of magnetic flux passing through a 
loop is to rotate a loop in a magnetic field.

When the loop is ‘face on’ to the magnetic field, the maximum amount 
of magnetic flux is passing through the loop. As the loop turns, the amount 
decreases. When it has turned 90º, there is no flux passing through it at all. As 
the loop continues to turn, the magnetic field passes through the loop from 
the other side: a negative amount of flux, from the point of view of the loop.

As the loop turns further still, the amount of magnetic flux passing through 
the loop reaches a negative maximum, then comes back to zero, and finally 
passes through the original face of the loop.

S SN

slip rings

loop
axis of rotation

P

Q side-on view of loop

N

A loop ‘face on’ to a magnetic field has maximum magnetic flux.

The amount of magnetic flux passing through the loop varies like a sine wave. 
The induced emf across the ends of the loop is equal to the change of magnetic 
flux with time. In mechanics, the velocity is defined as the change of displace-
ment over time and it is shown as the gradient of the displacement-time graph. 
Similarly the induced emf is shown as the gradient of a magnetic flux–time 
graph, which is also a sine wave.

The emf graph is the same shape as the flux graph (see the figure at left) but 
shifted sideways, so that when the flux is a maximum, the emf is zero. (At this 
point the flux–time graph is flat, so the gradient is zero.)

Similarly, when the flux is zero, the flux–time graph is steepest, so the 
gradient is a maximum and the emf is a maximum.

Which way does the current travel in the loop? From which connection, 
P or Q, does the current leave the loop to go around the external circuit? This is 
not easy to determine. It can be worked out using Lenz’s Law or using the mag-
netic force of electrons in the loop. This is shown below.

Using Lenz’s Law
As the loop passes through the horizontal plane the magnetic flux changes 
from passing through one side to passing through the other.

In part (a) of the following figure, the magnetic flux is entering the loop 
from above. In part (b), it enters from below. The change in magnetic flux 
is therefore upwards. The induced magnetic field will then be down at this 
point. To produce this field, the conventional current needs to run in the 
order ABCD.

Time

loop

flux ФB emf

B

Flux–time graph
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S

axis of rotation

A

C

D

I

S
B

C

D

A

N SN

P
(–)

Q
(+)

side-on view of loop

B
(b)

N SN

axis of rotation

P

Q
side-on view of loop

(a)

Direction of current flow as loop passes through the horizontal position

At this point in the rotation, the current will enter the external circuit from 
the slip ring at Q and return to the loop by the slip ring at P. So, for the time 
being, Q is the positive terminal and P the negative.

In the diagrams above, the wire from A is attached to the front metal ring, 
the one connected to P, and the wire from B is attached to the back ring, the 
one connected to Q. These connections are fixed. When the loop rotates about 
its axis, the two slip rings also rotate about the same axis. The black blocks are 
made of graphite. They are being held in place against the spinning slip rings 
by the springs. Graphite is used because it not only conducts electricity but is 
also a lubricant. The spinning slip rings easily slide past the fixed block. The 
blocks are also called ‘brushes’ because early designs used thin metal strips 
that rested against the slip rings.

Using magnetic force on the 
charges in the wire
As the loop passes through the horizontal plane, the left 
side of the loop, AB (see the figure at left), is moving up 
and the right side, CD, is moving down. The force of the 
magnetic field on the positive charges in AB will be 
towards B, while the force on the electrons in AB will be 
towards A.

Similarly, the positive charges in CD will be pushed 
to D, while the electrons will be pushed towards C.

This means that conventional current will flow ABCD, 
while the electrons will travel around the loop in the 
order DCBA. The conventional current will leave the 
external circuit from D and return to the loop by A. This 
is the same result obtained as with the previous method.

Weblink
Generator applet

S

B C

DA
N

P

QI

F
magnetic field

F — direction of force on positive charges

I — direction positive charges move due to rotation

Legend

Using your left-hand rule to determine current direction 
in a rotating loop
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The sinusoidal emf drives current through the external circuit first one way, 
then the opposite way, and is thus called alternating current (AC).

This design of a rotating coil in a magnetic field is called a generator. If the 
ends of the coil are connected to slip rings, then the voltage across the external 
connections is alternating in direction, producing an alternating current. The 
device is now called an alternator.

If the slip rings are replaced by a split ring used in a DC motor, the current 
reverses every half-cycle, and so the alternating current is converted into pul-
sating direct current (DC). The device is now called a DC generator.

SN

+–

(a)

commutator
(b)

emf output

emf in loop

Time

AC voltage coming from loop, and DC coming from commutator

Peak, RMS and peak-to-peak voltages
The voltage output of an AC generator varies with time, producing a sinusoidal 
signal. This signal, shown in the figure below, can be described in terms of the 
physical quantities described below.

Voltage

Time

Vpeak

–Vpeak

T–
2

T

Sinusoidal signal from voltage output of an AC generator

The period, T, is the time taken for one complete cycle.
The frequency, f, is the number of full cycles completed in one second. The 
frequency is related to the period by the equation:

 =T
f
1

.

 The frequency of the power supplied to households is 50  Hz (1 hertz is one 
 cycle per second). The period is therefore 1

50
 per second = 0.02  s.

The amplitude is the maximum variation of the voltage output from zero. It 
is called the peak voltage, Vpeak. Similarly, the amplitude of the current is 
called the peak current, Ipeak.
The RMS (root mean square) voltage, VRMS, is the value of the constant 
DC voltage that would produce the same power as the AC voltage across 

An alternating current is an 
electric current that reverses 
direction at short, regular intervals.

A generator is a device in which a 
rotating coil in a magnetic field is 
used to produce a voltage.

A direct current is an electric 
current that flows in one direction 
only.

Unit 3 Principles of 
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The period, T, of a periodic wave 
is the time it takes a source to 
produce a complete wave. This 
is the same as the time taken for 
a complete wave to pass a given 
point.

The frequency, f, of a periodic 
wave is the number of times that it 
repeats itself every second.

The amplitude of a periodic 
disturbance is the maximum 
variation from zero.

The peak voltage, Vpeak, is the 
amplitude of an alternating 
voltage.

The peak current, Ipeak, is the 
amplitude of an alternating 
current.

The RMS (root mean square) 
voltage, VRMS, is the value of the 
constant DC voltage that would 
produce the same power as AC 
voltage across the same resistance.
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the same resistance. The RMS voltage is related to the peak voltage by the 
equation:

=V
V

2
.RMS

peak

 The peak voltage of a 230  V RMS household power supply is 325  V. A 
230  V RMS output from a generator delivers the same amount of power 
as a 230  V DC power supply across the same resistance. Similarly, IRMS is 
the value of a DC current that generates the same power as an AC current 
through the same resistance:

=I
I

2
.RMS

peak

The peak-to-peak voltage, Vp−p, is the difference recorded between the 
maximum and minimum voltages. In the case of a symmetrical AC voltage:

 Vp−p = 2Vpeak

 Similarly:

 Ip−p = 2Ipeak

Sample problem 7.4

A digital multimeter gives a measurement of 6.3  V for the RMS value of an AC 
voltage. A CRO is used to measure the peak-to-peak voltage. What value do 
you expect?

VRMS = 6.3  V

V V V2 2 2p p peak RMS= = × ×−

    = × ×2 2 6.3 V
    = 17.8 V
    = 18 V

Revision question 7.4

A toaster is rated at 230  V RMS and 1800  W. What are the values of the RMS and 
peak currents?

Producing a greater EMF
The AC voltage produced by a generator has a sub-
stantial technological application because it is easy 
to make things spin. In hydroelectricity, electricity is  
produced when water falls under gravity through 
pipes and hits the vanes of a propeller connected to a 
generator. In coal and gas-fired turbines, the burning 
fuel heats up water to a high temperature and 
pressure to direct against the vanes of the turbine.

The emf that is produced by a generator has a fre-
quency the same as the frequency of the rotation of a 
coil in a magnetic field.

Using the Faraday equation for average emf:

 = − ∆
∆

N BA
t

emf
( )
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The peak-to-peak voltage, Vp−p, 
is the difference between the 
maximum and minimum voltages 
of a DC voltage.
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Solution:

Vanes of a turbine at a coal plant
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and ignoring the − sign (which relates to direction), we can deduce the 
following ways to produce a larger emf:

increase the number of turns
increase the strength of the magnetic field
increase the area of each coil
decrease the time for one turn (that is, increase the frequency of rotation).
(Note that turning the coil twice as fast doubles both the induced emf and 

the frequency — that is, it halves the period.)
Other technological strategies can also increase the emf. These are described 

below.
The pole ends of the magnet can be curved so that the coils are close to the 
magnets for more of the rotation.
An iron core can be placed inside the coils to strengthen the magnetic field.
The coils can be wound onto the iron core in grooves cut into the outer 
surface so that the iron core is as close as possible to the magnetic poles to 
increase the magnetic field.

N S

–+ slip rings

N

S

brushes

Improvements to the design of a DC motor and an alternator.

coil turned twice as fast

Time

Emf

Doubling the frequency 
doubles the induced emf.
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Chapter review
Unit 3 Generation of electricity 

Describing AC electricity

Sit Topic test

AOS 2

Topics 1 & 2

Summary
 ■ A metal rod moving across a magnetic field experi-

ences an induced voltage across its ends.
 ■ The induced voltage across the ends of a moving 

conductor in a magnetic field will produce an elec-
tric current if the ends are connected by a wire out-
side the magnetic field.

 ■ Magnetic flux is a measure of the amount of mag-
netic field passing through an area. It is measured 
in webers (Wb). Its magnitude is the product of the 
component of the magnetic field strength, B, that is 
perpendicular to the area and the area, A.

 ■ An emf is induced in a loop if the magnetic flux 
passing through the loop changes. The emf induced 

in a single loop is given by emf = 
t

BΦ∆
∆ , where ΦB  

is the magnetic flux. The negative sign in the equation 
acknowledges Lenz’s Law, which states that the 
induced current (and hence emf) is such that it  
creates a magnetic field that opposes the change in  
flux.

 ■ The emf generated in N loops threaded by a magnetic 

flux, ΦB, is given by N
temf BΦ= − ∆

∆ .
 ■ In an alternator, a coil rotates in a magnetic field to 

induce a sinusoidal voltage and therefore an alter-
nating current. Slip rings are used at the end of the 
coil to allow the alternating current to flow in an 
external circuit.

 ■ In a DC generator, the slip rings are replaced with a 
commutator to allow a direct current to flow in an 
external circuit.

 ■ The voltage output of an AC generator can be 
described in terms of its amplitude, frequency and 
period. The amplitude of the voltage output is known 
as the peak voltage, Vpeak. The peak-to-peak voltage, 
Vp−p, is the difference between the maximum and 
minimum voltages of the output.

 ■ The RMS (root mean square) voltage, VRMS, is the 
value of the constant DC voltage that would pro-
duce the same power as AC voltage across the same 
resistance. Similarly, IRMS is the value of the con-
stant direct current that would produce the same 
power as alternating current through the same 
resistance.

 ■ The emf produced by a generator can be increased by 
increasing the number of turns in the coil, increasing 
the strength of the magnetic field, increasing the area 
of each coil or increasing the frequency of rotation of 
the coil.

Questions
Magnetic flux
 1. What is the difference between magnetic flux and 

magnetic field strength?
 2. Why did Faraday use coils with many turns of 

copper wire?
 3. Calculate the maximum magnetic flux passing 

through:
(a) a single coil of area 0.050  m2 in a magnetic field 

of strength 3.0  T
(b) a single coil of area 4.5  cm2 in a magnetic field 

of strength 0.4  T
(c) a coil of 50 turns, 12  cm2 in area in a magnetic 

field of strength 0.025  T.
 4. Draw a graph of the magnetic flux passing through 

a loop which is turning anticlockwise, from the 
position shown in the diagram below.

SN

 5. As the metal rod shown falls through the magnetic 
field, charge is separated and a voltage is 
established between the two ends of the rod. This 
requires energy. Where did the energy come from?

 6. A magnet falling through a metal tube can achieve 
terminal velocity. Why?

 7. (a)  Explain what happens to the voltage between 
the ends of the rod in question 5 as the rod falls 
faster.

(b) How does this process differ from charging a 
capacitor?

Induced emf
 8. The loop of wire shown on the next page is quickly 

withdrawn from the magnetic field. Which way 
does the current flow in the loop?
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 9. Two coils are placed one on top of the other with 
their centres in line as shown in the diagram  
below.
(a) If a battery is switched on in the bottom coil, 

producing a clockwise current seen from 
above, what happens in the top coil?

(b) Would the effect be different if the battery was 
connected to the top coil?

(c) Would the effect be different if the battery was 
switched off?

 10. Two coils are placed side by side on a page with 
their centres in line.
(a) If a battery is switched on in the left coil, 

producing a clockwise current (seen from the 
left), what happens in the right coil?

(b) Would the effect be different if the current was 
anticlockwise?

 11. The diagram below shows a confined uniform 
magnetic field coming out of the page with a wire 
coil in the plane of the page. Is there an induced 
current in the coil as it is moved in direction:
(a) A
(b) B
(c) C
(d) D?
Give a reason for each answer. If there is a current, 
indicate the direction.

Answer key:

A – 

B – 

C – 

D – 

into page

out of page

 12. Calculate the average induced emf in each of the 
following situations.
(a) A circular loop of wire of 5.0  cm radius is 

removed from a magnetic field of strength 
0.40  T in a time of 0.2  s.

(b) The magnetic flux through a coil changes from 
60  Wb to 35  Wb in 1.5  s.

(c) The magnetic flux through a coil changes from 
60  Wb to −35  Wb in 2.5  s.

 13. Calculate the average induced current in each of 
the following situations.
(a) A circular loop of wire, 10  cm long with a 

resistance 0.4  Ω, is removed from a magnetic 
field of strength 0.60  T in a time of 0.3  s.

(b) The magnetic field strength perpendicular 
to a square loop, of side length 0.26  m and 
resistance 2.5  Ω, is increased from 0.2  T to 
1.2  T in 0.5  s.

(c) A stretched circular spring coil of 8  cm 
radius and resistance 0.2  Ω is threaded by a 
perpendicular magnetic field of strength 2.0  T. 
The coil shrinks back to a radius of 4  cm in 
0.8  s.

 14. A coil with an area of 0.04  m2 of 100 turns spins at 
a rate of 50  Hz in a magnetic field of strength 2.5  T.
(a) What is the average emf induced as the 

coil turns from parallel to the field to 
perpendicular to the field?

(b) What is the average emf as the coil does one 
complete turn?

 15. How can a motor operate as a DC generator?
 16. (a)  Use the relationship for the size of induced 

emf to show that the unit for the magnetic 
field, the tesla, can be written as volt × 
second × metre−2.

(b) Now use Ohm’s Law and the definition of 
electric current to show that the tesla can also 
be written as ohm × coulomb × metre−2.

(c) Now use the definition of magnetic flux to 
show that the unit for magnetic flux, the 
weber, can be written as ohm × coulomb.

 17. An orbiting satellite has a small module tethered 
to it by a 5.0  km conducting cable. As the satellite 
and its module orbit Earth, they cut across Earth’s 
magnetic field at right angles.
(a) If the pair are travelling at a speed of 

6000  m  s−1, how far do they travel in 1.0  s?
(b) What area does the conducting cable cross 

during the 1.0  s period?
(c) If the strength of Earth’s magnetic field at 

this distance is 0.1  mT, what is the size of the 
induced emf?

 18. A bar magnet, with its north end down, is dropped 
through a horizontal wire loop.
(a) What is the direction of the induced current 

when the magnet is:
     (i) just above the loop
   (ii) halfway through the loop
 (iii) just below the loop?
(b) Draw the graph of the induced current against 

time.
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(c) Where did the electrical energy of the induced 
current come from?

(d) If the magnet falls from a very long distance 
above the loop to a very long distance below 
the loop, what is the overall change in 
magnetic flux through the loop? What does 
this imply about the area under the current–
time graph?

(e) If the magnet accelerates under gravity, how 
will the induced current in the coil compare in 
size and duration when the magnet is above 
and then below the loop?

 19. How much charge, in coulombs, flows in a loop 
of wire of area 1.6 × 10−3  m2 and resistance 0.2  Ω 
when it is totally withdrawn from a magnetic field 
of strength 3.0  T?

 20. A magnet passes through two loops, one wire and 
the other plastic. Compare the induced emfs and 
the induced currents of the two loops.

 21. Lenz’s Law is an illustration of the conservation 
of energy. Explain why the reverse of Lenz’s Law 
(the direction of the induced current reinforces 
the change in magnetic flux) contravenes the law 
about the conservation of energy. Use the example 
of a north end of a magnet approaching a loop of 
conducting wire (as shown below).

NS

 22. A DC motor has a coil rotating in a magnetic field. 
This rotation produces a ‘back emf’ that opposes 
the current from the battery.
(a) How does the back emf vary with the speed of 

the motor?
(b) How then would the current vary with the 

speed of the motor?

(c) If the DC motor is used to lift masses, the 
speed of the motor is less for heavier masses. 
Why is there a risk that a heavy mass would 
burn out the motor?

 23. Calculate the average emf in the axle of a car 
travelling at 120  kph if the vertical component of 
the Earth’s magnetic field is 40  μT and the length 
of the axle is 1.5  m. (Hint: Calculate the area 
covered by the axle in one second.)

AC voltage and current
 24. In the past electronic valves were powered by 6.3  V 

RMS AC. What was the maximum voltage received 
by the valve?

 25. A CRO shows the following trace. The settings are:
Y: 10  mV per division
X: 5  ms per division.

What are the:
(a) period
(b) frequency
(c) peak voltage
(d) peak-to-peak voltage
(e) RMS voltage
of this AC signal?

 26. Some appliances are designed to run off either 
AC or batteries. The size of the batteries is 
equivalent to the peak of the AC voltage. If the 
appliance can run off 9  V DC, what RMS voltage 
would it also run off?



REMEMBER

Before beginning this chapter, you should 
be able to:

 ■ determine the amount of magnetic flux 
passing through an area

 ■ determine the average induced voltage in 
a loop from the flux change and the time 
in which the change took place

 ■ describe and determine the following 
properties of an AC voltage: frequency, 
period, amplitude, peak-to-peak voltage, 
peak-to-peak current, RMS voltage and 
RMS current

 ■ describe the relationship between 
charge, current, voltage energy and 
power in electric circuits

 ■ use the formulae Q = It, E = VQ, E = VIt, 
P = VI, V = IR and P = I 2R.

KEY IDEAS

After completing this chapter, you should 
be able to:

 ■ explain the operation of a transformer in 
terms of electromagnetic induction

 ■ determine the voltage and current using 
the number of turns in the primary 
and secondary coils, assuming the 
transformer is ideal

 ■ determine transmission losses using  
Vdrop = IlineRline and Ploss = Iline

2Rline

 ■ explain the use of transformers in an 
electricity distribution system

 ■  explain the advantage of AC power as a 
domestic power supply.

8 Transmission of power

CHAPTER

Transformers at a substation
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Electric power
Electric power is generated for a purpose — to provide lighting in streets and 
homes, and to operate motors in domestic and industrial appliances. But elec-
tric power is often generated very far from where it is consumed. This problem 
appears to be simply overcome: make the connecting wires from the gener-
ator to the light or motor longer and longer, even stretching to hundreds of 
 kilometres, and you have your basic transmission line.

Why not just extend the wires from your toaster all the way back to the power 
plant generator?

power plant

This simple solution might work on the laboratory bench where the con-
necting wires are so short that their resistance is a very small fraction of 
the overall resistance in the circuit. However, when the wires extend over 
 kilo metres, their resistance becomes significant. So, too, does the power loss 
in them because of the I 2R heating effect of the current. In addition, so much 
of the supply voltage now drops along the wires, that the remaining voltage 
across the devices is insufficient for them to operate properly. However, this 
power loss and voltage drop can be reduced with the use of transformers.

Sample problem 8.1

A 100  W light globe uses 100  J of energy every second when the voltage across 
it is 230  V.
(a) Calculate the current through the globe.
(b) Calculate the resistance of the globe for this current and voltage.
(c)   (i)  If the globe was connected to a 230  V power supply by 2.0  m of copper 

wire, what would be the total resistance of the circuit? The wire has a 
resistance of 0.022  Ω  m−1.

 (ii)  What would be the voltage across the globe?
(d)   (i)  If the globe was connected by 100  km of copper wire, what would be 

the total resistance of the circuit?
 (ii)  What would be the voltage across the globe now?
(e) Comment on how the light globe would respond.
(a) P = 100  W, V = 230  V

I = 
P
V

I = 0.435  A (0.43 A to two significant figures)

 The current through the globe is 0.43  A.

(b) R = 
V
I

= 
230V

0.435A

= 529 Ω (530 Ω to two significant figures)

 The resistance of the globe is 530  Ω.

Solution:
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(c) (i) Rtotal = Rcopper + Rglobe
 = (2.0  m × 0.022  Ω  m−1) + 529  Ω
 = 529  Ω to one decimal point
 (530  Ω to two significant figures)

  The total resistance of the circuit is 530  Ω.

 (ii) V = 
R

R 230 V
globe

total ×

     = 529
529 230 V

Ω
Ω ×

     = 230  V

  The voltage across the globe is 230  V.
(d) (i) Rtotal = Rcopper + Rglobe

     = (100 × 103  m × 0.022  Ω  m−1) + 529  Ω
     = 2729  Ω to the nearest whole number
        (2700  Ω to two significant figures)

  The total resistance of the circuit is 2700  Ω.

 (ii) V = 
R

R 230 V
globe

total ×

 = 
529

2729 230 V
Ω

Ω ×
 = 45  V
  The voltage across the globe is 45  V.

(e) The globe would not light up.

Transformers
The transmission line transmits electrical energy from generator to appliance. 
The electrical energy is generated at a voltage set by the generator. The current 
drawn from the generator depends on the resistance in the appliances connected 
to the generator. Appliances are connected in parallel, so that they can all have 
the same voltage. Plugging in additional appliances is the same as adding extra 
resistances in parallel, with each appliance drawing its own current from the 
supply. The extra appliances in parallel reduce the total resistance in the circuit.

With more appliances connected, there is a larger current drawn from the 
generator and therefore greater energy supplied. The amount of energy sup-
plied by the generator every second, or electrical power supplied, is equal to 
the product of the voltage supplied by the generator and the current drawn 
from the generator.

If the transmission lines are long, the energy wasted due to their resistance 
becomes a significant fraction of the energy supplied by the generator. If the 
same amount of energy every second (that is, the same power) can be sent 
along the lines but at a lower current, the energy loss will be less. In fact, since 
the power loss is given by I 2R (current2 × resistance of the lines), if the current 
through the lines is halved, the power loss is reduced by a quarter.

In 1831 Michael Faraday constructed a device to achieve this when he 
demonstrated that an electric current in one circuit had a magnetic effect that 
could produce an electric current in another circuit.

Faraday’s transformer consisted of two sets of coils of wire wrapped around 
a ring of iron. One coil was connected to a battery by a switch, the other to a 
galvanometer, a sensitive current detector.

A transformer is a device in which 
two multi-turn coils are wound 
around an iron core. One coil 
acts as an input while the other 
acts as an output. The purpose of 
the transformer is to produce an 
output AC voltage that is different 
from the input AC voltage.
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As with other examples of electromagnetic induction, the transformer works 
only when there is a change in magnetic flux in the coils and the connecting 
iron core.

With a battery connected to the primary coil, the secondary coil has a cur-
rent only when the switch in the primary coil is either opening or closing. To 
produce a continuous current in the secondary coil, the current in the primary 
coil needs to be continually changing. The obvious candidate is AC current, 
but an AC generator was not developed until 1881 by Lucien Gaulard and John 
D. Gibbs.

A changing current, I, in 
the primary coil produces 
a changing magnetic field, 
B, in the iron core, which is 
propagated through the iron 
core to the secondary coil, 
where the changing magnetic 
field induces a changing emf 
in the secondary coil.

R

II

AC
voltage

primary coil secondary coil

B

B
B

B

How does a transformer work?
Imagine an iron core shaped as a square. Around two sides are coils of wire. If 
an AC voltage is applied to the primary coil, an alternating magnetic field will be 
set up in the iron core. This alternating magnetic field will propagate through the 
iron core to the secondary coil. Here, the alternating magnetic field will induce an 
alternating voltage in this coil of the same frequency as the primary AC voltage.

An AC voltage supplied to the primary coil produces an AC voltage at the 
secondary coil, even though there is no electrical connection between the two 
coils. How do the sizes of the two voltages compare? In other words, how do 
the RMS voltages compare?

Comparing voltages
When an AC voltage supply, Vprim, is connected to the primary coil, the current 
will be limited by the resistance in the coil — which will be proportional to the 
number of turns, Nprim, in the coil.

The iron core has constantly changing magnetic flux throughout. So, 
applying Faraday’s Law:

to the primary coil gives

V N
tprim prim

BΦ= × ∆
∆

and to the secondary coil gives

V N
t

.sec sec
BΦ= × ∆

∆

Rearranging gives

t

V

N
V
N

B prim

prim

sec

sec

Φ∆
∆

= =

or

V

V

N

N
.prim

sec

prim

sec
=

Weblink
Transformer applet
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This relationship means that two types of transformer can be built. One 
type, which produces a secondary voltage greater than the primary, is called 
a step-up transformer. In this, the number of secondary turns is greater than 
the number of primary turns.

The other type is a step-down transformer, which features more primary 
turns than secondary turns. It produces a smaller secondary voltage than the 
primary voltage. Both types are used in the distribution of electricity from gen-
erator to home, and also inside the home.

AS A MATTER OF FACT

Low-voltage lighting is now quite common in instances where 230  V  AC 
would present a safety risk (for example, Christmas tree lights or external 
garden lighting). In these cases, a step-down transformer converts the 
230  V  AC down to a safer 12  V  AC.

If there is no energy loss as the energy is transferred from the primary to the 
secondary side, then the power in to the primary coil will equal the power out 
of the secondary coil. Since power = voltage × current, this can be written as:

Vprim × Iprim = Vsec × Isec.

Using this relationship, the main design characteristics of any transformer 
can be determined.

Sample problem 8.2

A step-down transformer is designed to convert 230  V  AC to 12  V  AC. If there 
are 190 turns in the primary coil, how many turns are in the secondary coil?
Vprim = 230  V, Vsec = 12  V, Nprim = 190 turns, Nsec = ?

 
V

N
prim

prim
 = V

N
sec

sec

 
230 V

190 turns
 = 

N
12 V

sec

       Nsec = 12  V × 190 turns
230 V

       = 9.9, approximately 10 turns

Revision question 8.1

A generator supplies 10  kW of power to a transformer at 1.0  kV. The current in 
the secondary coil is 0.50  A. What is the turns ratio of the transformer? Is it a 
step-up or a step-down transformer?

Ideal versus real
All transformers lose some energy in transferring electric power from the pri-
mary side to the secondary. This energy loss occurs in two areas. The first area 
is in the wires that make up the primary and secondary coils. This loss is called 
either copper loss (because the wires are usually copper), or resistive or I 2R 
loss. The loss is usually quite minor. If the transformer is being designed to take 
large currents, the wires on that side would be made thicker to take the high 
current and minimise the resistance.

A step-up transformer produces 
an output (secondary) voltage that 
is greater than the input (primary) 
voltage.

A step-down transformer 
produces an output (secondary) 
voltage that is less than the input 
(primary) voltage.

Circuit diagram symbol for 
transformer

Solution:
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The other area of energy loss in the transformer is in the iron core. The 
loss is due to induced currents in the iron core. These currents are called 
eddy currents, because they are like the swirls, or eddies, left in the water after 
a boat has gone by.

The changing magnetic flux in the iron core produces a changing voltage 
in each of the turns of the secondary coils. Iron is an electrical conductor, so 
it will behave in the same way as the turns of wire. A circular current will be 
induced in the iron in a plane at right angles to the direction of the changing 
magnetic flux.

(a) An eddy current induced in an iron core by a changing magnetic field, and  
(b) putting the iron core into layers reduces the currents.

N

I

increasing current

(a) induced eddy current insulation layer
iron layer

N

I

increasing current

(b) 

If the iron core was one solid piece of iron, these induced eddy currents 
would be quite substantial. As iron has a low resistance, it would lead to large 
energy loss.

To minimise this loss, the iron core is constructed of layers of iron sand-
wiched between thin layers of insulation. These layers, called laminations, 
significantly reduce the energy loss. In practice, transformers used to transmit 
large quantities of energy are about 99% efficient.

Transmission lines and towers near Melbourne

An eddy current is an electric 
current induced in the iron core of 
a transformer. Eddy currents result 
in undesirable energy losses from 
the transformer.
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Power distribution and transmission 
line losses
Development of the transformer meant that the AC voltage from the gener-
ator could be connected to a step-up transformer to increase the voltage and 
decrease the current, and so reduce energy loss in the transmission lines.

However, at the other end of the transmission line, the high voltage would be 
unsuitable, and possibly dangerous, for domestic appliances. So a step-down 
transformer is used to bring the voltage down to a safe level for home use.

In Victoria, electricity is generated at a variety of voltages. In Yallourn, 
the voltage is 20  000  V (20  kV). In Newport, the generating voltage is 
24  000  V. From the various generators around Victoria, the voltage is stepped 
up to 500  kV to transmit the electrical energy over the long distances to 
Melbourne.

Because of the very high voltage, there is an increased risk of electrical 
discharge to the ground or the frame of the cable support, so tall towers are 
needed to hold the transmission cables high off the ground. Several porcelain 
discs are used to insulate the cables from the steel frame of the tower.

When the cables reach the outskirts of Melbourne, the high voltage is 
stepped down to 66  kV for distribution within the suburban area. In each 
suburb, the voltage is then further stepped down to 11  kV, either for delivery 
to yet another step-down transformer or to a neighbourhood power pole. 
There it is reduced to 230  V for connection to all the houses in the immediate 
neighbourhood.

Victoria’s power system — a representation

power station
(generation at 20 kV)

hydro station

terminal stationtransmission
system

zone substation
(one in every
suburb and in most
country centres, 66 kV
to 11 kV and 22 kV)

switchyard
(step-up transformer)

220 kV
500 kV

330 kV

sub-transmission
lines (66 kV)

ground level transformer
rectifier (AC to DC)
(tram 600 V, train 1500 V)

street mains

pole type
transformer 
station
(11 000 to
400/230 V)

transformer
cubicle

service wires

underground street
mains and services

The high-voltage transmission line feeds several outer suburban terminal 
stations, each of which passes the current to several zone substations. These 
substations each connect to hundreds of pole transformers, which then con-
nect to hundreds of homes. As the distribution system spreads further and fur-
ther down to the domestic consumer, the current in the transmission line at 
each stage gets less and less.
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TABLE 8.1 Typical voltages in different sections of the transmission system

Ways to reduce resistance Consequences

Major power tower or switchyard to 
terminal substation

220  kV, 330  kV or 500  kV

Terminal substation to zone substation 66  kV

Zone substation to pole-type transformer or 
underground transformer

22  kV

Pole-type transformer to house 230  V single phase, or 400  V for a 
three-phase supply

This means that the cables in each section need to be designed to handle 
the current in that section in a cost-effective way, maximising energy transfer 
while minimising the cost of doing so. To minimise energy loss, the resistance 
of the cable needs to be made as small as possible.

PHYSICS IN FOCUS

Transmission lines
In transmission lines, the current actually flows through the outer surface 
of the line to a depth of about 1 mm. This is called the skin effect. It happens 
because the voltage is applied to the surface of the transmission line and the 
effect of the voltage decreases exponentially with distance from the surface.

Transmission lines are bare, multi-layered, concentrically stranded 
aluminium cables with a core of steel or reinforced aluminium for tensile 
strength. The advantages of wires in a bundle over a single conductor of 
the same area are lower resistance to AC currents, lower radio interfer-
ence and audible noise, and better cooling.

The smaller the sag in a transmission line, the greater will be the ten-
sion in the line. As the transmission lines cool, they contract, producing 
greater tension. High winds also increase the tension. All these factors 
may need to be considered when designing a transmission system.

The cost of building a transmission line is very nearly proportional to 
the input voltage, and to the length of the line. The cost to transmit each 
unit of power is proportional to the length and inversely proportional 
to the square root of the power. That is, if the power to be transmitted is 
quadrupled, it can be transmitted twice as far for the same unit cost. It is 
therefore uneconomical to transmit power over a long distance unless a 
large quantity of power is involved.

The cost of constructing a line underground rather than above ground 
ranges from eight times as much as (at 69  kV) to 20 times as much (at 
500 kV). Underground cables are usually stranded copper, insulated with 
layers of oil-soaked paper tape. Superconductive cables may make this a 
more economical proposition.

Basslink uses subsea cables to transmit high-voltage DC between 
 Victoria and Tasmania.

TABLE 8.2 Ways to reduce resistance

Method Effect

Make the wires fatter. This increases the cost of the material in the wire and the 
cost of the pole to hold up the heavier wire.

Use a better conductor. Metals differ in their electrical conductivity and in their 
economic value as a metal. Very good conductors such 
as gold and silver are too expensive to use as wires.
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Imagine that 400 MW of power was available to be transmitted along a 
transmission line of 4.0  Ω. How would the power losses due to the resistance 
of the transmission line vary with the voltage across the transmission line? The 
following table shows some typical values.

TABLE 8.3 Transmission of 400 MW at different voltages

Transmission voltage 1000  kV 500  kV 220  kV 66  kV

Current I
P
V
tot=⎛

⎝⎜
⎞
⎠⎟ 400  A 800  A 1800  A 6100  A

Power loss (Ploss = I 2R) 640  kW 2.6  MW 13  MW 150  MW

Power loss (%) 0.2% 0.6% 3.3% 37%

AS A MATTER OF FACT

Electric power was first transmitted in 1882 by Thomas Edison in 
New York and by St George Lane-Fox in London, both using a DC system 
for street lighting. The transmission was at low voltage with considerable 
transmission power line losses, and so limited to short distances.

Later that decade, George Westinghouse purchased patents for AC gen-
erators. His company also improved the design of transformers, and 
developed an AC-based transmission system. In 1886 these new devel-
opments allowed power to be transmitted over a distance of a kilometre, 
stepping up the voltage to 3000  V and then stepping it down to 500  V.

In the 1800s there was much debate on the relative efficiency of the AC 
and DC transmission systems as well as on their environmental effects. 
However, the superiority of the AC system was soon realised. By 1898 there 
was a 30  000  V 120  km line, and by 1934 the voltage was up to 287  000  V 
over 430  km. During World War II German scientists developed 380  000  V 
and overcame the effect of electrical discharge by using double cables.

During the 1960s transmission voltages reached 765  000  V. Future 
 voltages are expected to be at 1  000  000  V.

Sample problem 8.3

(a) A 20  kW, 400  V diesel generator supplies power for the 400  V lights on a 
film set at an outside location. The 500  m transmission cables have a resis-
tance of 5.0  Ω.

 (i) What is the current in the cables?
 (ii) What is the voltage drop across the transmission cables?
 (iii)  What is the power loss in the cables as a percentage of the power sup-

plied by the generator?
 (iv) What is the voltage supplied to the lighting?
(i) Current in the cables = current coming from generator
 For the generator: P = 20  000  W, V = 400  V, I = ?

 P = VI
20  000  W = 400 V × I

 I = 
20 000W

400V
 = 50 A

 Note: Using V = IR with V = 400  V and R = 5.0  Ω is incorrect because the 
400  V is across both the cables and the load at the end.

generator lighting

transmission
lines

500 m

R = 5.0 Ω

V = 400 V
P = 20 kW

Solution:
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(ii) For cables: I = 50 A, R = 5.0  Ω, V = ?

V = IR
 = 50 A × 5.0  Ω
 = 250  V

(iii) For cables: I = 50 A, R = 5.0  Ω, Ploss = ?

Ploss = I 2R
 = 50  A × 50 A × 5.0  Ω
 = 12  500  W

As a percentage, % Ploss = 
12 500W
20 000W

100
1

×

 = 62.5%

 Note: This answer could have been obtained by using P = VI, with  
V = 250  V from solution 2; however, there is a risk that 400 V may be used 
by mistake, so it is better to use I 2R.

(iv) Generator voltage = sum of voltages in circuit

Vgen = 400  V, Vcables = 250  V, Vload = ?

400  V = 250  V + Vload
 Vload = 400  V − 250  V
 = 150  V

 At this distance the voltage drop across the cables is too much to leave suf-
ficient voltage to operate the lights at their designated voltage. Given the 
noise of the generators, they cannot be moved closer. Therefore, step-up 
and step-down transformers with turns ratios of 20 are used to reduce the 
power loss in the cables and increase the voltage at the lights.

(b) Repeat the calculations in part (a), but this time increase the generator 
 voltage by a factor of 20 and, prior to connection to the lights, reduce the 
voltage by a factor of 20.

generator lighting

turns ratio
1:20

turns ratio
20:1

Rtot = 5.0 Ω

V = 400 V
P = 20 kW

 (i) What is the current in the cables?
 (ii) What is the voltage drop across the transmission cables?
 (iii)  What is the power loss in the cables as a percentage of the power sup-

plied by the generator?
 (iv) What is the voltage supplied to the lighting?
(i) Current in cables = current coming from step-up transformer

 Vsec = 20 × 400  V
 = 8000  V

 For an ideal transformer: Pprim = 20  000  W, Isec = ?
 Pprim = Psec = Vsec Isec

 20  000  W = 8000  V × Isec

Solution:
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 Isec = 
20 000W

8000V
 = 2.5 A

  (ii)  For cables: I = 2.5 A, R = 5.0  Ω, V = ?

   V = IR
  = 2.5  A × 5.0  Ω
  = 12.5  V

(iii) For cables: I = 2.5 A, R = 5.0  Ω, Ploss = ?
   Ploss = I 2R

     = 2.5  A × 2.5  A × 5.0  Ω
     = 31.25  W

   As a percentage, % Ploss = 31.25 W
20 000 W

100
1

×

   = 0.16%.

   This is 1
20

2⎛
⎝⎜

⎞
⎠⎟

 or 1
400

 of the original power loss! This is an impressive 

   reduction.
 (iv) Voltage supplied to step-down transformer = 8000  V − 12.5  V = 7988  V
    Voltage supplied to lighting:

    Vsec = 7988  V × 
1

20
   = 400  V

     Actually, the two-figure accuracy of the turns ratio means that the voltage 
7988  V should be rounded to 8000  V.

Revision question 8.2

A remote community uses a 50  kW, 250  V generator to supply power to its hos-
pital. The power is delivered by a 100-metre cable with total resistance of 0.20  Ω. 
(a) Answer the questions in part (a) of sample problem 8.3 as they apply to this 

question.
(b) Transformers with a turns ratio of 10:1 are installed. Repeat (a) with this 

new ratio.

Using Ohm’s Law wisely
The relationship V = IR (Ohm’s Law) is very useful. It can be applied in many 
situations in the one problem. This usefulness can lead to error if Ohm’s Law is 
not applied wisely. The errors occur when students assume that having calcu-
lated a value for V, that value can be used every time V = IR is used.

Rather, V = IR should be remembered as:
Voltage across a section =  current through the section  

× resistance of that section.
So, in transmission line problems, the voltage across the output of the gen-

erator is different from the voltage across the transmission lines, which is dif-
ferent, in turn, from the voltage across the load at the end of the lines.

A well-labelled diagram can help avoid this confusion. Imagine the gen-
erator as a battery and the two lines and the load as three separate resistors 
sharing the voltage from the battery.

In any electric circuit the total resistance determines how much current 
is drawn from the power supply. If there are transformers in the circuit, this 
statement is still true, but there are different currents and voltages on each side 
of the transformer.

Circuit diagram and battery 
circuit

generator lighting

transmission
lines

battery
+

−
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As more appliances are turned on, there is a larger secondary current, which 
causes a larger primary current to be drawn from the power supply. This means 
the secondary current drives the primary current. When all the appliances are 
turned off, there is no secondary current and, so, no primary current.

However, the primary voltage determines the secondary voltage through the 
ratio of turns in the transformer.

With more appliances turned on, the current in the transmission lines 
between the transformers increases. The increased voltage drop across these 
lines means that there will be slightly less voltage across the primary turns of 
the step-down transformer. This will result in a slight drop in the voltage for 
each of the appliances.

An electric circuit with step-up and step-down transformers

generator

appliances

step-up
transformer

step-down
transformer

REMEMBER THIS

Electric power is normally discussed in terms of 
watts or megawatts — for example, when com-
paring electrical generators or deciding between 
vacuum cleaners. However, the generator supplies 
energy, the cleaner consumes energy, and it is ulti-
mately we who pay for energy. The power rating, 
or wattage, of an electrical appliance indicates the 
rate at which it uses electricity. The longer it is on, 
the more energy is used and the more it costs. By 
definition:

 1 watt = 1 joule per second, so
 1 joule = 1 watt × 1 second, or 1 watt second.

As 1 watt second is equivalent to 1 joule, then

 1000 watt seconds = 1000  J, or
 1 kilowatt second = 1  kJ.

If a 1  kW heater was on for 1 s, it would use  
1 kilowatt second or 1 kilojoule of electrical energy. 
If it was on for 60 seconds, it would use 60 kilowatt 
seconds or 60 kilojoules.

The common unit for energy supply and con-
sumption in electricity is the kilowatt hour, which is 
the amount of energy consumed, for example, by a 
one-kilowatt heater for one hour. This unit is abbre-
viated to kWh (e.g. 60  kWh).

Conversion from kilowatt hour to joules:
 1  kWh = 60 × 60 kilowatt seconds
 = 3600 kilowatt seconds
 = 3  600  000 watt seconds
 = 3.6 × 106 joules
 = 3.6 megajoules.

eModelling
Modelling power transmission
doc-0040

The power rating, or wattage, of 
an electrical appliance indicates 
the rate at which it uses electrical 
energy.
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Summary
 ■ A transformer is a device in which two multiple-turn 

coils are wound around an iron core. One coil, the 
primary coil, acts as an input; the other, the secon-
dary coil, acts as an output. 

 ■ In a transformer, the iron core transfers the changing 
magnetic flux produced by an AC current in the pri-
mary coil to the secondary coil. The changing mag-
netic flux in the secondary coil induces an alternating 
voltage, producing an alternating current.

 ■ The purpose of the transformer is to produce an 
output AC voltage that is different from the input AC 
voltage.

 ■ A step-up transformer produces an output (secon-
dary) voltage that is greater than the input (pri-
mary) voltage. A step-down transformer produces an 
output (secondary) voltage that is less than the input 
(primary) voltage.

 ■ The relationship between the primary voltage and 
secondary voltage of a transformer is given by the 
equation:

 V

V

N

N
prim

sec

prim

sec
=

 ■ An ideal transformer does not lose energy. The power 
output of the secondary coil is equal to the power 
input of the primary coil. Thus 

 VprimIprim = Vsec Isec .

 ■ Real transformers lose energy in transferring electric 
power from the primary coil to the secondary coil. 
Some is lost in the wires that make up the coils. Some 
energy is lost due to induced currents (eddy cur-
rents) in the iron core.

 ■ When AC electric power is transmitted over long dis-
tances, some energy is lost due to the resistance of 
the transmission lines. The rate at which energy is 
lost can be calculated using the formula P = I 2R.

 ■ The power losses in long-distance transmission lines 
can be reduced by using step-up transformers to 
increase the transmission voltage, thereby reducing 
the transmission current. Step-down transformers 
are then used to reduce the voltage supplied to 
homes and industrial customers.

Questions
Transformers
 1. An ideal transformer has 100 turns in the primary 

coil and 2000 turns in the secondary coil. If the 

primary coil was connected to 230  V  AC, what 
would be the voltage across the secondary coil?

 2. A transformer has 300 turns in the primary coil and 
six turns in the secondary coil.
(a) If 230  V  AC is connected to the primary coil, what 

will be the voltage across the secondary coil?
(b) If the secondary voltage is 9.0  V  AC, what is the 

voltage across the primary coil?
 3. Christmas tree lights need a transformer to convert 

the 230  V  AC to 12  V  AC.
(a) If there are 50 coils on the 12  V secondary coil, 

how many turns are there in the primary coil?
(b) If there are 20 globes connected in parallel to 

the secondary coil, each of 12  V and 5  W, what 
is the current in the secondary coil?

(c) What is the current in the primary coil, 
assuming the transformer is ideal?

 4. Explain why a transformer does not work with a 
constant DC input voltage.

 5. Why is the core of transformers made of an alloy of 
iron that is easy to magnetise?

 6. A transformer is used to change 10  000  V to 230  V. 
There are 2000 turns in the primary coil.
(a) What type of transformer is this?
(b) How many turns are there in the secondary coil?

 7. An ideal transformer has 400 turns in the primary 
coil and 900 turns in the secondary coil. The 
primary voltage is 60  V and the current in the 
secondary coil is 0.30  A.
(a) What is the voltage across the secondary turns?
(b) What is the power delivered by the secondary 

coils?
(c) What is the current in the primary coil?

Transmission lines
 8. An isolated film set uses a 50  kW generator to 

produce electricity for lighting and other purposes 
at 250  V RMS. The generator is connected to lights 
about 100  m away by transmission cables with a 
combined resistance of 0.3  Ω.
(a) When the generator is operating at full capacity, 

what current does it supply?
(b) What is the power loss in the transmission cables?
(c) What is the total drop in voltage across the two 

cables connected by the generator?
(d) What is the voltage supplied to the lights?
(e) Two transformers with a turns ratio of 20 

are used to first step up the voltage from the 
generator to the cables, and then to step it 
down from the cables to the lights. Using this 
new information, answer (b) to (d) above again.
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 9. The appliances in a house would, if all turned on 
and connected to a power supply of 230  V, draw a 
current of 40  A.
(a) What is the effective resistance of the 

appliances in the house, when they are all 
turned on?

However, the house is some distance from the 
power lines and the connecting cables have a 
resistance of 0.20  Ω.
(b) What is the total resistance of the circuit 

connected to the power lines?
(c) If the voltage at the power lines is 230  V  AC, 

what is the voltage at the house?
(d) A 20  kW workshop which operates off the 

230  V supply is installed in the garage in 
parallel to the house. Answer parts (b) and (c) 
again for the new situation.

  The owners now decide to install a step-up 
transformer and a step-down transformer, 
each with a turns ratio of 10:1, at either end of 
the transmission lines. 

(e) If the system draws 120  A from the grid 
at 230  V, will the voltage at the house and 
the garage be within 1% of 230  V for the 
appliances to work properly?

(f) At night the workshop is turned off. Will the 
voltage at the house increase, decrease or 
remain unchanged? Give reasons.

 10. A generator at a power station produces 220  MW 
at 23  kV. The voltage is then stepped up to 330  kV. 

The power passes along transmission lines with a 
total resistance of 0.40  Ω.
(a) What is the current in the transmission lines?
(b) What is the power loss in transmission lines?
(c) What is the voltage drop across them?
(d) What voltage and power is available to the 

step-down transformer located at the end of 
the lines ?

 11. The maximum electrical power the generator at a 
power station can deliver is 500  MW at a voltage 
of 40  kV. This power is to supply the electricity 
needs of a distant city. Transmission lines 
connecting the station to the city have a total 
resistance of 0.8  Ω. At the city, the transmission 
lines are connected to a series of step-down 
transformers that reduce the voltage to 230  V. 
The city wants a two-step evaluation of the 
transmission system.
(a) What percentage of the power delivered by the 

power station is lost in the transmission lines?
 The power loss can be reduced by stepping up the 
voltage at the generator with a transformer. At the 
substations on the city’s outskirts, the voltage is 
stepped down. The voltage could be stepped up 
to 400  kV with a transformer with a turns ratio of 
10:1. The same transmission lines could be used, 
but they would need to be raised higher off the 
ground and be better insulated at each pole.
(b) What would be the effect on the power loss in 

the transmission lines?
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The study of waves reveals many important concepts in physics.

KEY IDEAS

After completing this chapter, you should be able to:
 ■ explain waves as the transmission of energy without the 
net transfer of matter through a medium

 ■ identify features of waves, including the amplitude, 
wavelength, period and frequency

 ■ identify transverse and longitudinal waves:
– describe sound as a longitudinal pressure wave
– describe light as a transverse wave
– recognise visible light as part of the electromagnetic 

spectrum
– use ray diagrams to show how light is reflected from 

smooth surfaces
– appreciate that light travels in straight lines
– apply a wave model to the behaviour of light and the 

rest of the electromagnetic spectrum
 ■ use v f

T
λ λ= =  to calculate the wavelength, frequency,

period and speed of waves

 ■ investigate and analyse constructive and destructive 
interference from two sources theoretically and practically

 ■ use the expressions nλ and n
1
2

λ−⎛
⎝⎜

⎞
⎠⎟

 ■ explain the Doppler effect
 ■ explain resonance as the vibration of an object caused 
when a forced oscillation matches the object’s natural 
frequency of vibration

 ■ explain the formation of a standing wave as the 
superposition of a travelling wave and its reflection

 ■ investigate standing waves in strings fixed at one or both 
ends

 ■ explain diffraction as the spread of various frequencies 
(and wavelengths) of waves as they pass around objects 
or through gaps in barriers

 ■ explain the diffraction patterns formed when waves pass 
through gaps of different widths or around obstacles, 
including the qualitative effect of changing the 

w
λ

 ratio 
for gaps or the wavelength of the wave passing an 
obstacle.

CHAPTER

9 Mechanical waves
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Light and its properties
Sight is the sense by which humans and most other mammals get most of their 
information about the world. This sense responds to light. Questions about 
light naturally arise. Where does light come from? What can it do? How can its 
properties be explained?

Some obvious observations of light are:
Sources of light are needed to see.
Light travels very fast.
Light produces shadows.

Sources of light
When we experience darkness at night or in an enclosed room, we know that 
a source of light, such as the Sun or a lamp, is needed to light up the darkness. 
Once a lamp is turned on, we can see features in the room because the light 
from the lamp shines on them and is then reflected into our eyes.

This means that objects can be classified into two groups. Objects seen 
because they give off their own light are called luminous objects; those seen 
because they reflect light are called non-luminous objects. The Sun, torches 
and candles are luminous objects. Tables, chairs, cats and dogs are non- 
luminous objects.

Some luminous objects produce light because they are hot. The Sun is one 
example. The higher the temperature, the brighter the light, and the colour 
also changes. These objects are called incandescent.

The Pleiades open star cluster in the constellation Taurus. All stars are 
incandescent sources of light.

Other objects are cold and produce light in another way. This involves 
changes in the energy of electrons in the material brought about by either 
chemical or electrical processes.

Objects that give off their own light 
are described as luminous.

Luminous objects that produce 
light as a result of being hot are 
described as incandescent.
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Speed of light
The gap we experience between seeing lightning and hearing thunder shows that 
sound travels relatively slowly. Light seems to travel so fast that to our experience its 
speed seems infinite; that is, we seem to observe events at the instant they happen.

Galileo Galilei (1564–1642) was not convinced of this. He attempted to 
determine the speed of light by measuring the time delay between the flash 
of his lamp to an assistant on a distant mountain and the return flash from his 
assistant’s lamp. No detectable delay was observed and Galileo concluded that 
the speed of light was very high. A longer distance was needed.

Galileo used this method to measure the speed of light. He attempted to time, 
with his pulse, the delay between uncovering his lantern and seeing the light from 
his partner’s lantern, which his partner uncovered at the moment when he saw 
the light from Galileo’s lantern.

Olaus Roemer was a Danish astronomer born two years after Galileo’s death. 
He observed that the time between eclipses of Jupiter’s moons by Jupiter 
decreased as the Earth moved closer to Jupiter and increased as the Earth 
moved away. Roemer reasoned that this was because the distance the light 
travelled from Jupiter to Earth became greater as the Earth’s orbit took it fur-
ther from Jupiter (see the left figure on page 201). Roemer used this time and 
the known diameter of the Earth’s orbit about the Sun to estimate the speed of 
light. The value he obtained was 2.7 × 108  m  s−1.

Eventually, in the nineteenth century, with stronger light sources and more 
precise timing devices, Galileo’s method could be used, but the assistant was 
replaced by a mirror. The values obtained then were about 3.0 × 108  m  s −1.

Early in the twentieth century, the American scientist Albert A. Michelson 
(1852–1931) used a rapidly rotating eight-sided mirror (see the right figure on 
page 201). The light was reflected to a distant mirror about 35 kilometres away, 
then reflected back to the rotating mirror. For some particular rotation rates, 
this light is reflected by one of the sides of the rotating mirror directly to the 
observer. The rotation rate can be used to calculate the speed of light.

Digital docs
Investigation 9.1
Luminous or not?
doc-18545

Investigation 9.2
Luminosity and temperature
doc-18546

The time, as seen from the 
Earth, for Jupiter’s moon, Io, 
to orbit Jupiter increases as 
the Earth moves from A to B. 
(The diagram is not to scale.)

Sun
B

Earth’s orbit

A

Io (moon)

Jupiter



201CHAPTER 9 Mechanical waves

The value Michelson obtained was 2.997  96 × 108  m  s−1. He actually meas-
ured the distance of 35  km to an accuracy of 2.5  cm. The speed of light is cur-
rently measured at 2.997  924  58 × 108  m  s−1. It is rounded off to 300  000  km  s−1 
for calculation purposes. 

Light from the source reflects off one of the sides of the rotating mirror towards 
a mirror 35 kilometres away. The returning beam hits the rotating mirror. If one of 
the sides of the mirror is in the right position, the light enters the eyepiece and 
can be seen by the observer. By measuring the speed of rotation when the beam 
enters the eyepiece, the speed of light can be calculated.

observer

source of light

fixed
mirror

rotating mirror
with eight sides

35 km

Sample problem 9.1

How long does light take to travel from the Sun to the Earth? 

speed of light = 3.00 × 108  m  s−1

distance from Sun to Earth = 1.49 × 1011  m

     speed
distance travelled

time taken
=

time taken
distance travelled

speed
⇒ =

     time
1.49 10 m

3.00 10 m s

11

8 1= ×
× −

       = 0.497 × 103  s
       = 497  s
       = 8 minutes 17 seconds.

Sample problem 9.2

How far does light travel in one year (one light-year)?

distance travelled = speed × time taken
 distance = 3.00 × 108  m  s−1 × (365.25 × 24 × 60 × 60)  s
 = 9.47 × 1015  m 
 = 9.47 × 1012  km.

Shadows
The bright Sun produces sharp shadows on the ground. The shape of the 
shadow is the same shape as the object blocking the light. This could happen 
only if light travels in a straight line.

Solution:

Solution:
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The straight rays passing the 
edge of a bird leave a sharp 
shadow on the ground.

Ray model
The need for sources of light, the great speed of light and the existence of sharp 
shadows can be described by a ray model. The model assumes that light travels 
in a straight line path called a light ray. A light ray can be considered as an 
infinitely narrow beam of light and can be represented as a straight line (see 
the figure below).

Light rays leave a point on this pencil and 
travel in straight lines in all directions. The 
pencil is seen because of the ‘bundle’ of 
rays that enter the eye. 

Plane mirror reflection
When you look at yourself in a plane mirror, some of the light rays from your 
nose, for example, travel in the direction of the mirror and reflect off in the 
direction of your eye. What is happening at the surface of the mirror to pro-
duce such a perfect image?

Light rays from the tip of the nose reflect off 
the mirror and enter the eye.

mirror

A ray of light is a very narrow 
pencil-like beam of light.
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To investigate the reflection of light, the angles made by the rays need to be 
measured. Measurements of these angles show that, like a ball bouncing off a 
flat wall, the angle of incidence equals the angle of reflection.

The ray approaching the mirror is called the incident ray. The ray leaving the 
mirror is called the reflected ray. The normal is a line at right angles to the mirror. 
The angles are measured between each ray and the normal. When the path of a 
light ray is traced, it is found that the angle of incidence always equals the angle 
of reflection.

normal

angle of
reflection

angle of
incidence

incident
ray

reflected
ray

mirror

The other seemingly trivial conclusion that can be drawn from the investi-
gation is that the incident ray, the normal and the reflected ray all lie in the 
same plane.

The incident ray, the ‘normal’ to the 
surface of the mirror and the reflected ray 
all lie in the same plane, which is at right 
angles to the plane of the mirror. 

normal

mirror

reflected ray

incident ray

Regular and diffuse reflection
Reflection from a smooth surface is called regular or specular reflection. 
But what happens with an ordinary surface, such as this page? A page is not 
smooth like a mirror. At the microscopic level, there are ‘hills and valleys’. As 
the light rays come down into these hills and valleys, they still reflect with the 
two angles the same but, because the surface is irregular, the reflected rays 
emerge in all directions. This is called diffuse reflection. Light rays from dif-
fuse reflections — from the ground, trees and other objects — enter the eye 
and enable the brain to make sense of the world.

This is diffuse reflection. Each of the 
incoming parallel rays meets the irregular 
surface at a different angle of incidence. 
The reflected rays will therefore go off in 
different directions, enabling observers 
in all directions to receive light from 
the surface; in other words, to see the 
surface. irregular surface

observer A

observer B

 

The angle of incidence is the angle 
between an incident ray and the 
normal.

The angle of reflection is the angle 
between a reflected ray and the 
normal. 

The normal is a line that is 
perpendicular to a surface or a 
boundary between two surfaces.

Regular reflection, also referred to 
as specular reflection, is reflection 
from a smooth surface.

Diffuse reflection is reflection 
from a rough or irregular surface.
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What is colour?
Colours are an important part of our language and our environment. Colours 
can be peaceful to the eye or very stimulating. We use colours in our language 
to convey feelings and emotions (for example, fiery red, warm orange and icy 
blue).

At first, colour may seem to be a defining part of an object, like size, shape 
and texture. For example, we say green leaves, red earth and blue eyes. It is only 
when experiments are done with light that we realise that the colour or appear-
ance of an object changes with the light that is shining on it.

But what about rainbows? And the blue sky? Here we seem to have colour, 
pure colour, separate from any solid object. So what really is colour? It is both 
a property of light and an aspect of human perception. You will learn more 
about the physics of colour later in this chapter and in chapter 10.

Waves — energy transfer without 
matter transfer
A wave is a disturbance that travels through a medium from the source to the 
detector without any movement of matter. Waves therefore transfer energy 
without any net movement of particles. Periodic waves are disturbances that 
repeat themselves at regular intervals. Periodic waves propagate by the dis-
turbance in part of a medium being passed on to its neighbours. In this way 
the disturbance travels, but the medium stays where it is.

Looking at the examples in the table below, two different types of waves can 
be identified. For the pulse on the rope and the ripples on the water surface, 
the disturbance is at right angles to the direction the wave is travelling. These 
types of waves are called transverse waves.

In the examples of the sound wave travelling through air and the 
 compression moving along the spring, the disturbance is parallel to the 
direction the wave is travelling. These types of waves are called longitudinal  
waves.

TABLE 9.1 Some examples of waves

Wave Source Medium Detector Disturbance
Sound Push/pull of a 

loudspeaker

speaker

compressions

Sound waves

Air Ear Increase and 
decrease in air 
pressure

Rope Upward flick of 
hand

Pulse on a rope

Rope Person at 
other end

Section of 
rope is lifted 
and falls back

Stretched 
spring

Push of hand

Compressions moving along a stretched spring

compressions Coils in 
the spring

Person at 
other end

Bunching of 
coils

Water Dropped stone

Ripples on water

Water Bobbing 
cork

Water surface 
is lifted and 
drops back

Changing the colour of the light 
on these flowers from white 
to red to blue changes our 
perception of their colour.

(a) White light

(b) Red light

(c) Blue light
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Properties of waves
The frequency of a periodic wave is the number of times that it repeats itself 
every second. Frequency is measured in hertz (Hz) and 1  Hz = 1  s–1. Frequency 
can be represented by the symbol f.

The period of a periodic wave is the time it takes a source to produce a com-
plete wave. This is the same as the time taken for a complete wave to pass 
a given point. The period is measured in seconds and is represented by the 
symbol T.

The period of a wave is the reciprocal of its frequency. For example, if five 
complete waves pass every second, i.e. f = 5.0  Hz, then the period (the time for 

one complete wavelength to pass) is 
1

5.0
 = 0.2 seconds. In other words, f = 

T
1

. It 

follows that T = 
f
1

.

The amplitude of a wave is the size of the maximum disturbance of the 
medium from its normal state. The units of amplitude vary from wave type to 
wave type. For example, in sound waves the amplitude is measured in the 
units of pressure, whereas the amplitude of a water wave would normally be 
measured in centimetres or metres.

The wavelength is the distance between successive corresponding parts of 
a periodic wave. The wavelength is also the distance travelled by a periodic 
wave during a time interval of one period. For transverse periodic waves, the 
wavelength is equal to the distance between successive crests (or troughs). For 
longitudinal periodic waves, the wavelength is equal to the distance between 
two successive compressions (regions where particles are closest together) or 
rarefactions (regions where particles are furthest apart). Wavelength is repre-
sented by the symbol λ (lambda).

Transverse periodic waves in a piece of string

crest

direction
of wave
movement

direction of
particle motion

position of
undisturbed
medium

trough

amplitude

amplitude

wavelength

The speed, v, of a periodic wave is related to the frequency and period. In a 
time interval of one period, T, the wave travels a distance of one wavelength, λ.  
Thus:

T
f

fspeed
distance

time 1
λ λ λ= = = = .

This relationship, v = f  λ, is sometimes referred to as the universal wave 
equation.

The frequency of a periodic wave is determined by the source of the 
wave.  The speed of a periodic wave is determined by the medium through 

A wave is a transfer of energy 
through a medium without any net 
movement of matter.

Periodic waves are disturbances 
that repeat themselves at regular 
intervals.

Transverse waves are those 
for which the disturbance is at 
right angles to the direction of 
propagation.

Longitudinal waves are those for 
which the disturbance is parallel to 
the direction of propagation.

The frequency of a periodic wave 
is the number of times that it 
repeats itself every second.

The period of a periodic wave 
is the time it takes a source to 
produce a complete wave.

The amplitude of a wave is the size 
of the maximum disturbance of the 
medium from its normal state.

The wavelength is the distance 
between successive corresponding 
parts of a periodic wave.

Unit 4 Characteristics 
of waves
Concept summary 
and practice 
questions

AOS 1

Topic 1

Concept 1

Unit 4 Properties of 
waves
Concept summary 
and practice 
questions

AOS 1

Topic 1

Concept 2
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which it is travelling. Because the wavelength is a measure of how far a wave 
travels during a period, if it can’t be measured, it can be calculated using the 

formula 
v
f

λ = .

In a longitudinal wave, as opposed to a transverse wave, the oscillations are 
parallel to the direction the wave is moving. Longitudinal waves can be set up 
in a slinky, as shown in part (a) below. Sound waves in air are also longitudinal 
waves, as shown in part (b) below. They are produced as a vibrating object, 
such as the arm of a tuning fork, first squashes the air, then pulls back creating 
a partial vacuum into which the air spreads.

Longitudinal waves in (a) a slinky (b) air

compressions

compression rarefaction
rarefactions

direction of
particle motion

direction of
wave motion

λ

λ

(b)

(a)

Longitudinal waves cause the medium to bunch up in places and to spread 
out in others. Compressions are regions in the medium where the particles 
are closer together. Referring to sound waves in air, compressions are regions 
where the air has a slightly increased pressure, as a result of the particles being 
closer together. Rarefactions are regions in the medium where the particles 
are spread out. This results in a slight decrease in air pressure in the case of 
sound waves.

The wavelength (λ) for longitudinal waves is the distance between the 
centres of adjacent compressions (or rarefactions). The amplitude of a 
sound wave in air is the maximum variation of air pressure from normal air 
pressure.

Sample problem 9.3

What is the speed of a sound wave if it has a period of 2.0  ms and a wavelength 
of 68  cm?

STEP 1: 
Note down the known variables in their appropriate units. Time must be 
expressed in seconds and length in metres.

  T = 2.0  ms
 = 2.0 × 10−3  s
λ   = 68  cm
 = 0.68  m

STEP 2:
Choose the appropriate formula.

λ=v T    .

A compression is a region of 
increased pressure in a medium 
during the transmission of a sound 
wave.

A rarefaction is a region of 
reduced pressure in a medium 
during the transmission of a sound 
wave.

Solution:
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STEP 3:
Transpose the formula. (Not necessary in this case.)

STEP 4: 
Substitute values and solve.

v    
0.68 m

2.0   10 s

 340  m s

3

1

=
×

=

−

−

Sample problem 9.4

What is the wavelength of a sound of frequency 550  Hz if the speed of sound in 
air is 335  m  s−1?

f = 550  Hz, v = 335  m  s−1

v = f  λ

λ⇒ =

=

=

−

v
f

     

 
335 m s

550 Hz
 0.609 m

1

Revision question 9.1

A siren produces a sound wave with a frequency of 587  Hz. Calculate the speed 
of sound if the wavelength of the sound is 0.571  m.

Interference of waves
Superposition
Pulses (and periodic waves) pass through each other undisturbed. If this 
were not true, music and conversations would be distorted as the sound 
waves pass through each other. This can be observed when two pulses pass 
through each other on a spring. When the pulses are momentarily occu-
pying the same part of the spring, the amplitudes of the individual pulses 
add together to give the amplitude of the total disturbance of the spring. This 
effect is known as superposition (positioning over) and is illustrated in the 
following figure.

The shape of the resultant disturbance can be found by applying the super-
position principle: ‘The resultant wave is the sum of the individual waves’. For 
convenience, we can add the individual displacements of the medium at 
regular intervals where the pulses overlap to get the approximate shape of the 
resultant wave. Displacements above the position of the undisturbed medium 
are considered to be positive and those below the position of the undisturbed 
medium are considered to be negative. This is illustrated in the figure at the 
top of the next page, in which two pulses have been drawn in red and blue with 
a background grid. The sum of the displacements on each vertical grid line is 
shown with a dot and the resultant disturbance, drawn in black, is obtained by 
drawing a smooth line through the dots.

Solution:

Unit 4 Constructive 
and destructive 
interference
Concept summary 
and practice 
questions

AOS 1

Topic 1

Concept 3

Superposition is the adding 
together of amplitudes of two or 
more waves passing through the 
same point.
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(a) Two pulses of different shapes approach each other on a spring. (b) The pulses 
begin to pass through each other. (c) As the pulses pass through each other, the 
amplitudes of the individual pulses add together to give a resultant disturbance. 
(d) After passing through each other, the pulses continue on undisturbed.

(a)

(b)

(c)

(d)

undisturbed medium

resultant disturbance

 
Figures (a)–(d) above show that it is possible for a part or whole of a pulse to be 

‘cancelled out’ by another pulse. When this effect occurs, destructive superposi-
tion, or destructive interference, is said to occur. When two pulses superimpose 
to give a maximum disturbance of a medium, constructive superposition, or 
constructive interference, is said to occur. This effect is shown in figure (c).

Reflection of waves
When waves arrive at a barrier, reflection occurs. Reflection is the returning of 
the wave into the medium in which it was originally travelling. When a wave 
strikes a barrier, or comes to the end of the medium in which it is travelling, at 
least a part of the wave is reflected.

A wave’s speed depends only on the medium, so the speed of the reflected 
wave is the same as for the original (incident) wave. The wavelength and 
 frequency of the reflected wave will also be the same as for the incident wave.

Reflection of transverse waves in strings
When a string has one end fixed so that it is unable to move (for example, 
when it is tied to a wall or is held tightly to the ‘nut’ at the end of a stringed 

How to obtain the shape of a 
resultant disturbance

Destructive interference is the 
addition of two wave disturbances 
to give an amplitude that is less 
than either of the two waves.

Constructive interference 
describes the addition of two wave 
disturbances to give an amplitude 
that is greater than either of the 
two waves.

Digital doc
Investigation 9.3
Reflection of pulses in springs
doc-18547
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 instrument), the reflected wave will be inverted. This is called a change of phase. 
If the end is free to move, the wave is reflected upright and unchanged, so there 
is no change of phase. These situations are illustrated in the figure below.

(a) incident pulse fret board

(b)

Reflected pulse is inverted, but has
the same length and speed.

incident pulse retort stand(c)

Reflected pulse is not inverted, but
has the same length and speed.

(d)

nut (reflecting barrier)

Reflection of a transverse pulse on a string when (a) and (b) the end of the string 
is fixed (as in a guitar), and when (c) and (d ) the end of the string is free to move 
(as with a loop supported by a retort stand)

 

Standing waves
Standing waves are an example of what happens when two waves pass 
through the same point in space. They can either interfere constructively or 
destructively. Interference is explained in chapter 10. Standing waves are an 
example of interference is a confined space. The restriction may be a guitar 
string tied down at both ends, or a trumpet closed at the mouthpiece and 
open at the other end, or even a drum skin stretched tightly and secured at its 
circumference.

The questions are, How and where do the nodes and antinodes form? and 
What does this imply about what we hear?

Transverse standing waves in strings or springs
When two symmetrical periodic waves of equal amplitude and frequency (and 
therefore wavelength), but travelling in opposite directions, are sent through 
an elastic one-dimensional medium like a string, spring or a rope, construc-
tive interference and destructive interference occur. In fact, destructive inter-
ference occurs at evenly spaced points along the medium and it happens all 
the time at these points. The medium at these points never moves. Such points 
in a medium where waves cancel each other at all times are called nodes. In 
between the nodes are points where the waves reinforce each other to give a 
maximum amplitude of the resultant waveform. This is caused by constructive 
interference. Such points are called antinodes.

When this effect occurs the individual waves are undetectable. All that is 
observed are points where the medium is stationary and others where the 

A standing wave is the 
superposition of two wave trains at 
the same frequency and amplitude 
travelling in opposite directions. 
Standing waves are also known as 
stationary waves because they do 
not appear to move through the 
medium. The nodes and antinodes 
remain in a fixed position.

A node is a point at which 
destructive interference takes 
place.

An antinode is a point at which 
constructive interference takes 
place.
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medium oscillates between two extreme positions. There seems to be a wave, 
but it has no direction of motion. When this occurs, it is said to be a stationary 
or standing wave.

The figure below shows how standing waves are formed in a string by two 
continuous periodic waves travelling in opposite directions. It is important to 
note that the wavelength of the waves involved in the standing wave is twice 
the distance between adjacent nodes (or adjacent antinodes).
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(a) resultant wave (R)
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P

S

node

antinode

A
NNNNN

S

P

t =

(b) resultant wave (R)
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The formation of a standing wave

The figure below shows the motion of a spring as it carries a standing wave. 
It shows the shape of the spring as it completes one cycle. The time taken to do

this is one period (T ). Note that (i) at t
T

   
4

=  and at t
T

   
3
4

=  the medium is 

momentarily undisturbed at all points, and (ii) that adjacent antinodes are 
opposite in phase — when one antinode is a crest, those next to it are troughs.

A standing wave over one cycle

(a) (b)

(c) (d)

(e)

t = 0

t = T

t = T
2

t = T
4

t = 3T
4

 

Sample problem 9.5

Two students have created a standing wave in a string, as depicted in the figure 
above.
(a) How many nodes are there in the standing wave?
(b) How many antinodes are there?
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(c) If the students are 8.0 m apart, what is the wavelength of the wave?
(d) If the student at the left-hand end of the string is moving her hand at a fre-

quency of 4.0 Hz, what is the speed of the wave?
(e) At what frequency would the student need to move her hand to have only 

one antinode?

(a) There are four nodes, three in the picture and one at the elbow.
(b) There are three antinodes.
(c) The distance between nodes is given by 

8.0
3

. The wavelength is twice this 
distance and equal to:

  
2   8.0

3
   5.3 m.

× =

(d) Using v = f  λ, speed = 4.0 × 5.3 = 21.3 m s−1 = 21 m s−1.
(e) The speed is unchanged at 21 m s−1 and the wavelength is now 16 m, so the 

 frequency   
21.3
16

 1.3 Hz= = .

Revision question 9.2

The spring is now tightened so that the speed is 30 m s−1.
(a) What frequency will be needed to reproduce the pattern in the second figure 

on the previous page?
(b) A pattern is produced that has a wavelength of 8.0  m. Describe the pattern of 

nodes and antinodes. What is the new frequency?

Interference of waves in two dimensions
Interference of waves is best observed in a ripple tank. When two point sources 
emit continuous waves with the same frequency and amplitude, the waves 
from each source interfere as they travel away from their respective sources. 
If the two sources are in phase (producing crests and troughs at the same time 
as each other), an interference pattern similar to that shown in the following 
figure is obtained.

An interference pattern 
obtained in water by using two 
point sources that are in phase

Lines are seen on the surface of the water where there is no displacement 
of the water surface. These lines are called nodal lines. They are caused by 
destructive interference between the two sets of waves. At any point on a nodal 
line, a crest from one source arrives at the same time as a trough from the other 

Solution:

Unit 4 Interference 
from two 
sources
Concept summary 
and practice 
questions

AOS 1

Topic 1

Concept 4

Nodal lines are lines where 
destructive interference occurs 
on a surface, resulting in no 
displacement of the surface.
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source, and vice versa. Any point on a nodal line is sometimes called a local 
minimum, because of the minimum disturbance that occurs there.

Between the nodal lines are regions where constructive interference occurs. 
The centres of these regions are called antinodal lines. At any point on an 
antinodal line, a crest from one source arrives at the same time as a crest 
from the other source, or a trough from one source arrives at the same time 
as a trough from the other source, and so on. Any point on an antinodal line is 
sometimes called a local maximum, because of the maximum disturbance that 
occurs there.

When the two sources are in phase, as shown in the figure on the previous 
page, the interference pattern produced is symmetrical with a central antinodal 
line. Note that any point on the central antinodal line is an equal distance from 
each source. Since the sources produce crests at the same time, crests from the 
two sources will arrive at any point on the central antinodal line at the same time.

Similar analysis will show that, for any point on the first antinodal line on 
either side of the centre of the pattern, waves from one source have travelled 
exactly one wavelength further from one source than from the other. This 
means that crests from one source still coincide with crests from the other, 
although they were not produced at the same time (see the following figure). 
Point PA is on the first antinodal line from the centre of the pattern. It can be 
seen that PA is 4.5 wavelengths from S1 and 3.5 wavelengths from S2.

A way to establish whether a point is a local maximum or not is to look at the 
distance it is from both of the two sources. If the distance that the point is from 
one source is zero or a whole number multiple of the wavelength further than 
the distance it is from the other source, then that point is a local maximum. 
This ‘rule’ can be re-expressed as: ‘If the path difference at a point is nλ, the 
point is a local maximum’.

Therefore, for a point to be an antinode:

d(PS1) − d(PS2) = nλ  n = 0, 1, 2, 3, 4, . . .

where
n is the number of the antinodal line from the centre of the pattern
P is the point in question
S1 and S2 are the sources of the waves
d(PS1) is the distance from P to S1.

S1 S2
trough

crest

A
A

A
NN

n = 0 n = 1
n = 1 n = 2

n = 2central antinodal line

PN

PA

 
Similar analysis shows that, for a point on a nodal line, the difference in distance 

from the point to the two sources is 
1
2

λ or 1
1
2

λ or 2
1
2

λ and so on. This means 

Antinodal lines are lines where 
constructive interference occurs on 
a surface.

Interference pattern produced 
by two sources in phase
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that a crest from one source will coincide with a trough from the other source, 
and vice versa. Point PN in the figure is 5 wavelengths from S1 and 4.5 wave-
lengths from S2.

For a node:
d(PS1) − d(PS2) = (n − 

1
2

)λ  n = 1, 2, 3, 4, . . .
where
n is the number of the nodal line obtained by counting outward from the cen-
tral antinodal line.

Sample problem 9.6

Two point sources S1 and S2 emit waves in phase in a swimming pool. The 
wavelength of the waves is 1.00  m. P is a point that is 10.00  m from S1 and P is 
closer to S2 than to S1. How far is P from S2 if:
(a) P is on the first antinodal line from the central antinodal line?
(b) P is on the first nodal line from the central antinodal line?

(a) d(PS1) is greater than d(PS2); d(PS1) = 10.00  m, λ  = 1.00  m
 If P is on the first antinodal line from the central antinodal line, then:

d(PS1) − d(PS2) = λ.

 Therefore,

 d(PS2) = d(PS1) − λ
 = 10.00  m − 1.00  m
 = 9.00  m.

(b) d(PS1) is greater than d(PS2); d(PS1) = 10.00  m, λ  = 1.00  m
 If P is on the first nodal line from the central antinodal line, then:

d(PS1) − d(PS2) = 
1
2

λ.

 Therefore,
d(PS2) = d(PS1) − 

1
2

λ
 = 10.00  m − 0.50  m
 = 9.50  m.

Interference with sound
When two sources emit sound with the same frequency in phase, an interfer-
ence pattern is produced. The pattern is three-dimensional, but its features are 
the same as for interference patterns produced in water.

A local antinode, or maximum, is a point where constructive interference 
produces a sound of greater intensity than that produced by one source alone. 
As the pattern is three dimensional, there is a central antinodal plane (as 
opposed to a line) where all points are an equal distance from each source. 
In this plane, a compression from one source coincides with a compression 
from the other source. This is followed by a progression of coincidental rare-
factions and compressions. As the waves pass through such a point, there is a 
maximum variation in the air pressure, resulting in a louder sound.

A local node, or minimum, is a point where destructive interference pro-
duces a sound of much less intensity than that produced by one source alone. 
At a point in a nodal region, compressions from one source coincide with rare-
factions from the other source and vice versa. As the waves pass through such 
a point, there is very little variation in the air pressure, resulting in a very soft 
sound.

Solution:
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AS A MATTER OF FACT

Complete destructive interference rarely occurs as the sounds pro-
duced from each source are usually not of equal intensity, due to the 
different distances travelled by the individual waves and the inverse 
square law that describes this variation in intensity with distance from 
the source.

The same formulas that were used for water waves can be used to determine 
whether a point is part of a nodal or antinodal region.

For a point to be an antinode,

d(PS1) − d(PS2) = nλ  n = 0, 1, 2, 3, 4, . . .

where
n is the number of the antinodal region from the centre of the pattern
P is the point in question
S1 and S2 are the sound sources.

For a point to be a node,

d(PS1) − d(PS2) = (n − 
1
2

)λ  n = 1, 2, 3, 4, . . .
where
n is the number of the nodal line obtained by counting outward from the cen-
tral antinodal plane.

Sample problem 9.7

A student arranges two loudspeakers, A and B, so that they are connected in 
phase to an audio amplifier. The speakers are then placed 2.00  m apart and 
they emit sound which has a wavelength of 0.26  m.

Another student stands at a point P, which is 15.00  m directly in front of 
speaker B. The situation representing this arrangement is shown in the figure 
below. Describe what the student standing at point P will hear from this 
position.

2.00 m

B

A

P

15.00 m

amplifier

In this type of question, it is important to determine whether the point is a 
node or antinode.

This is done by determining the path difference and then comparing this to 
the wavelength.

λ  = 0.26  m, d(PB) = 15.00  m

d(PA) can be found by applying Pythagoras’s theorem.

      d(PA)2 = 15.00  m2 + 2.00  m2

      = 229  m2

So d(PA) = 15.13  m

Solution:
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d(PA) − d(PB) = 15.13  m − 15.00  m
 = 0.13  m.

 0.13  m = 
1
2

λ

Therefore, the student is at a local minimum and will hear only a very soft 
sound.

Colour effects of interference
In the case of light, when two waves of red light meet, constructive interfer-
ence would result in bright red light. Destructive interference would result in 
an absence of light, that is, darkness.

When light of a mixture of colours shines on a film of oil in a puddle on 
the road, light is reflected from the top surface of the oil, as well as from the 
bottom surface. However, the light from the bottom surface has further to 
travel; that is, twice the thickness of the oil film. Depending on how this extra 

distance compares with the wavelength 
of a particular colour, the two waves may 
undergo constructive or destructive inter-
ference. For example, when you look at 
an oil film, the section that looks yellow is 
where the thickness is just right for yellow 
light to undergo maximum constructive 
interference. Yet at the same place, other 
colours (which have different wavelengths) 
undergo destructive interference or less 
than maximum constructive interference. 
At other places on the oil film, the thick-
ness will be just right for maximum con-
structive interference for another colour. 
The different colours on the oil film indi-
cate the different thicknesses of the oil as 
the film spreads out.

In an oil film, the light waves reflecting from 
the bottom surface interfere with those 
reflecting from the top surface. Whether the 
interference is constructive or destructive 
depends on how the thickness of the film 
compares with the wavelength of the light.

air n = 1.0

oil n = 1.5

water n = 1.33 When a wave is
reflected from a
material of higher
refractive index, a
crest is reflected 
as a trough.

 

The colours that flash when you move the shiny surface of a CD in sunlight 
also appear as a result of interference. The light from adjacent ridges in the 
surface follows paths of very slightly different lengths. The waves interfere 
with each other. The difference between the lengths of the paths changes 
because the distance between adjacent ridges changes. Different colours 
undergo constructive and destructive interference, depending on the path 
difference.

Digital doc
Investigation 9.4
Thin soap films
doc-18548

The colours on this oil film are the result of the interference of light. 
The wave model of light explains this phenomenon.
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These colours are the result of 
interference.

Diffraction
Waves spread out as they pass objects or travel through gaps in barriers. This 
is readily observable in sound and water waves. For example, you can hear 
someone speaking in the next room if the door is open, even though there is 
not a direct straight line between the person and your ears.

Diffraction is the directional spread of waves as they pass through gaps or 
pass around objects. The amount of diffraction depends on the wavelength of 
the wave and the width of the gap or the size of the obstacle.

For example, the spreading out of sound from loudspeakers is the result of 
diffraction. The sound waves spread out as they pass through the opening in 
the front of the loudspeaker. Without diffraction, hardly any sound would be 
heard other than from directly in front of the speaker cone.

Diffraction of water waves
The diffraction of sound can be modelled with water waves in a ripple tank. 
The next figure shows the way water waves diffract in various situations. The 
diagrams apply equally well to the diffraction of sound waves.

Diffraction of water waves: 
(a) short wavelength around 
an object, (b) long wavelength 
around the same object, 
(c) short wavelength through 
a gap, (d) long wavelength 
through the same gap, 
(e) short wavelength around 
the edge of a barrier and 
(f) long wavelength around the 
edge of the same barrier

(c)

shadow

shadow

shadow

(a)

(e)

shadow

(d)

(b)

(f)

shadow

Diffraction is the spreading out, 
or bending of, waves as they pass 
through a small opening or move 
past the edge of an object.
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The region where no waves travel is called a shadow. The amount of diffrac-
tion that occurs depends on the wavelength of the waves. The longer the wave-
length, the more diffraction occurs. As a general rule, if the wavelength is less 
than the size of the object, there will be a significant shadow region.

When waves diffract through a gap of width w in a barrier, the ratio
w
λ

is 

important. As the value of this ratio increases, so, too, does the amount of dif-
fraction that occurs.

AS A MATTER OF FACT

Barriers built next to freeways are effective in protecting nearby residents 
from high-frequency sounds as these have a short wavelength and undergo 
little diffraction. The low-frequency sounds from motors and tyres, how-
ever, diffract around the barriers because of their longer wavelengths.

barrier

high-frequency sound low-frequency sound

The diffraction of low and high frequencies around a freeway barrier

Directional spread of 
different frequencies
The opening at the end of a wind instru-
ment such as a trumpet, the size of some-
one’s mouth and the size of a loudspeaker 
opening all affect the amount of diffrac-
tion that occurs in the sound produced. 
High-frequency sounds can best be heard 
directly in front of these devices.

When a loudspeaker plays music, it is 
reproducing more than one frequency at 
a time. Low-frequency soundwaves from 
a bass have a large wavelength; high-fre-
quency soundwaves from a trumpet have 
a short wavelength. Short-wavelength, 
high-frequency sounds do not diffract 
(spread out) very much when they emerge 
from the opening of a loudspeaker, but 
long wavelength sounds do. If a single 
loudspeaker is used, the best place to hear 
the sound is directly in front of the speaker.

The diffraction of high and low 
frequencies from a loudspeaker

‘bright’
sound

high 
frequencies

less ‘bright’
soundlow 

frequencies
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Sample problem 9.8

Two sirens are used to produce frequencies of 200  Hz and 10  000  Hz. Describe 
the spread of the two sounds as they pass through a window in a wall. The 
window has a width of 35  cm. Assume that the speed of sound in air is 330  m  s−1.

First calculate the wavelengths of the sounds using the formula v = f λ. These 
calculate to 165  cm and 3.3  cm respectively. There will be a very small diffrac-
tion spread for the sound of wavelength 3.3  cm because the wavelength is 
small compared with the opening. There will be a large diffraction spread for 
the sound of wavelength 165  cm because the wavelength is large compared 
with the opening.

The Doppler effect
We are all familiar with the change in pitch as a noisy car passes us. This is most 
pronounced when an emergency vehicle races by. Think of the sounds people 
make when mimicking passing racing cars. The sound always starts high but 
finishes low. This is called the Doppler effect, after Christian Johann Doppler 
who predicted it in 1842 before it had been observed. (Vehicles were slow 
then!) The Doppler effect is the result of the wave travelling at a constant speed 
through the medium while the source is in motion relative to the medium.

Consider a fire-engine racing to attend a fire. While it is stuck in traffic with 
its siren blaring, a Physics student decides to measure the frequency and wave-
length of the sound. The fire-engine’s siren alternates between a high-pitched 
sound and a low-pitched sound. He measures the high-pitched sound to have 
a frequency of 500  Hz and the low-pitched sound to have a frequency of 200  Hz. 
After determining the speed of sound to be 340  m  s−1, and noticing that there is 
no wind, he calculates the wavelengths using v = f λ.

 

v
f

v
f

340 m s
500 Hz

0.680 m for the 500 Hz sound

340 m s
200 Hz

1.70 m for the 200 Hz sound

1

1

λ

λ

=

=

=

=

=

=

−

−

Later, the traffic jam has cleared and the fire-engine passes the physics stu-
dent. The fire-engine travels at a velocity of 24  m  s−1 relative to the road (and 
air). The speed of sound remains at 340  m  s−1 through the air. The fire-engine 
is identical to the first one; but now the student measures the frequencies to be 
538  Hz and 215  Hz as the fire-engine approaches, and 467  Hz and 187  Hz as the 
fire-engine moves away. His frequency-measuring equipment is not faulty — 
he could clearly hear the pitch drop as the fire-engine passed him. When the air 
is still, something approaching you will sound higher in pitch than when it is at 
rest relative to you, and will sound lower in pitch when it is moving away from 
you. Doppler cleverly predicted this result before the advent of fast fire-engines. 
His prediction was first confirmed experimentally by having a trumpeter play a 
note while passing on a ‘relatively’ fast-moving train.

The sound produced by the siren of the fire-engine is a series of pressure 
variations in the air. When the fire-engine produces a compression (region of 

Solution:
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higher-than-average air pressure) of the high-frequency sound, this com-
pression moves forward at the speed of sound in air, 340  m  s−1. The next com-
pression is produced T seconds later, where T is the period of the soundwave.

T
f
1=

 
 

1
500 Hz

=

 = 0.002 s later when the first compression has travelled:
d vt

340 m s 0.002 s

0.68 m.

1

=
= ×
=

−

In this time the fire-engine has moved:

d vt

24 m s 0.002 s

0.048 m.

1

=
= ×
=

−

The distance between compressions is therefore:
λ  = 0.68  m − 0.048  m

  = 0.632  m.
For the fire-engine that was stationary, the wavelength was 0.68  m. As sound 

is travelling at 340  m  s−1 relative to the student on the roadside for fire-engines, 
and v = f λ, the shorter wavelength from the approaching fire-engines will have 
a higher frequency than the stationary fire-engines. In this case the detected 
frequency would be:

f
v

340 m s
0.632 m

1

λ
=

=
−

 =  538  Hz, measured by the student for the 500  Hz sound as the fire-engine 
approached at 24  m  s−1.

In order to derive a formula for the Doppler effect, let the speed of sound be 
vs and the speed of the sound source (fire-engine) relative to the observer be v. 
The driver of the fire-engine measures the velocity of the sound of his siren to 
be vs − v in the forward direction, and vs + v in the reverse direction. As v = f λ, 

the wavelength of the sound in front of the fire-engine is given by 
v v

f
s

o

−
, while 

behind the fire-engine the wavelength is 
v v

f
s

o

+
, where fo is the frequency of the 

sound emitted.
Now consider the frequency heard by an observer standing on the roadside. 

For him the sound has a relative velocity of vs  m  s−1 because he is at rest rela-
tive to the air carrying the sound waves (assuming no wind).

The wavelength has been determined already, so while the fire-engine is 
moving towards the observer, the frequency is:

f
v

v v
f

v f
v v

( )

( )
.

s

s

o

s o

s

=
−⎛

⎝⎜
⎞
⎠⎟

=
−

The Doppler effect, (a) O1 
and O2 both hear the same 
frequency sound. (b) O1 hears 
a higher frequency than O2.

Legend:
= Source

= Observer in front
 of sound source
= Observer behind
 sound source

(b) Source moving to the right

v
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When the fire-engine is moving away, the frequency is:

f
v

v v
f

v f
v v

( )

( )
.

s

s

o

s o

s

=
+⎛

⎝⎜
⎞
⎠⎟

=
+

Notice that the frequency will always be heard as higher than the fre-
quency produced by the sound source when the sound source approaches 
the observer, and lower as it moves away. This agrees with the results of the 
physics student’s observations of the fire-engine and our experiences of noisy 
vehicles racing by.

Electromagnetic radiation is a different type of wave. Are light, radio 
waves and other parts of the electomagnetic spectrum also susceptible to 
the Doppler effect? The answer is yes. Police radar guns, for example, make 
use of the Doppler effect. They emit radio waves travelling with a velocity of 
3 × 108  m  s−1. The gun sends radio waves of a particular frequency and meas-
ures the frequency of the radiation that it receives after the waves reflect off the 
car. However, with sound we have been able to refer to its velocity relative to its 
medium. What that means in terms of light and other forms of electromagnetic 
radiation will become clearer in what is to follow.

Sample problem 9.9

A noisy truck approaches a stationary pedestrian operating a frequency meter. 
The truck motor roars at a frequency of 2000  Hz as it approaches the ped-
estrian and 1500  Hz as it moves away. What is the speed of the truck relative to 
the pedestrian? Take the speed of sound in air to be 340  m  s−1.

Using the Doppler formulae, as the truck approaches, the frequency is:
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As the truck recedes, the frequency is:
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We now have two equations for fo and v. We can solve them for v by dividing 
the first equations by the second to eliminate fo:
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The truck must be moving at 48.6  m  s−1 relative to the air. (This truck is well 
over the speed limit.)

Solution:



221CHAPTER 9 Mechanical waves

The analysis presented above assumes that the sound source moves directly 
toward, and then directly away, from the observer. The change in frequency 
will be gradual for someone not directly in the path of the sound, as suggested 
by figure (b) on page 219. It also assumes that the sound receiver is at rest rela-
tive to the medium of the sound.

It is possible to travel faster than sound. Some aircraft and missiles travel 
faster than sound. This speed can make weapons particularly menacing. For 
example, the V-2 bombs used in World War II struck English cities before their 
inhabitants could hear them coming. Also, the constructive interference of the 
sound waves overlapping when the sound barrier was broken carried sufficient 
energy to break windows after the sound source had passed.

The Doppler effect can be observed in light waves, but the nature of light 
demands Einstein’s relativity theory be applied. A change in the frequency 
of light corresponds with a change in the colour of the light. The character-
istic patterns of elements visible in starlight passed through a spectroscope 
are shifted towards the red (long wavelength) end of the spectrum if the star 
is moving further away from us. If the star is moving closer to us, the spectrum 
of the starlight is shifted towards the blue (short wavelength) end of the spec-
trum. This makes calculating the ‘radial’ component of a star’s velocity relative 
to the Earth straightforward. The transverse compnent of a star’s velocity does 
not influence the Doppler effect and must be measured some other way. Use 
of the Doppler effect led to the big bang theory. Measuring the radial speed 
of galaxies, astronomers in the early twentieth century discovered that most 
of them were moving away from us. Edwin Hubble found that the speed was 
greater for those galaxies further from us, and drew the conclusion that the 
universe has expanded from a single point.

The Doppler effect is an example of how object moving relative to an 
observer may seem to be different because of their movement. However, this is 
only the beginning. The universe ‘as we know it’ takes on a whole new meaning 
when the principle of relativity is applied to all aspects of physics.

The Doppler effect applies to all types of wave motion and has been observed 
with light waves. Astronomers use the Doppler effect to determine the speed 
with which stars are travelling towards or away from the Earth. If they are 
travelling away from the Earth, the wavelengths of light will be longer and the 
characteristic spectrum of the star will be shifted towards the red end of the 
spectrum. This effect is known as ‘red shift’.

Resonance
Resonance is the vibration of an object caused when a forced oscillation 
matches the object’s natural frequency of vibration.

Every object has one or more natural frequencies of vibration. For example, 
when a crystal wine glass is struck with a spoon, a distinct pitch of sound is 
heard. If the resonant frequency is produced by a sound source near the glass, 
the glass will begin to vibrate. In this case, the alternating driving force is pro-
vided by the variations in air pressure at the surface of the glass due to the 
sound produced by the sound source.

If the intensity of the external sound is increased, it is possible to increase 
the amplitude of the vibrations in the crystal wine glass until the crystal lat-
tice falls apart and the glass shatters. Note, however, that resonance does not 
necessarily mean that something will break!

Resonance is the condition where 
a medium responds to a periodic 
external force by vibrating with the 
same frequency as the force.

Unit 4 Resonance
Concept summary 
and practice 
questions

AOS 1

Topic 1

Concept 5
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Chapter review
Unit 4 Mechanical waves

Sit Topic test

AOS 1

Topic 1

Summary
 ■ Light sources are called luminous objects. Some 

luminous objects give off light because they are hot; 
these are called incandescent objects.

 ■ Light travels in straight lines through air at a speed of 
3.0 × 108  m  s−1. Shadows provide evidence that light 
travels in straight lines.

 ■ Modelling light as a pencil-like ray helps describe the 
reflection of light.

 ■ When light meets a surface the angle of incidence 
equals the angle of reflection. The incident ray, the 
normal to the surface and the reflected ray all lie in 
the same plane.

 ■ Waves are a means of energy transfer without matter 
transfer. There are many examples of waves and they 
can be transverse or longitudinal.

 ■ Properties of waves that can be measured include 
speed, wavelength and frequency. These quantities  
are connected by the universal wave equation:  
speed = frequency × wavelength, or v = f λ.

 ■ Light is a form of electromagnetic radiation that can 
be modelled as transverse waves with colours dif-
fering in frequency and wavelength.

 ■ Waves, including light, have the capacity to inter-
fere  with each other, producing constructive inter-
ference or destructive interference when two waves 
meet.

 ■ Standing waves are caused by the superposition of 
two wave trains of the same frequency travelling in 
opposite directions.

 ■ Some colour effects that we see are the result of the 
interference of light.

 ■ The Doppler effect is the result of a wave source 
moving through the medium. The waves move at 
constant speed relative to the medium, resulting in 
a higher frequency in front of the moving source and 
a lower frequency behind. The frequency in front of 

the source is given by f
v f
v v

s o

s( )=
−

 and behind the 

source by f
v f
v v

s o

s( )=
+  where vs is the speed of sound 

in the air, fo is the frequency of the source and v is the 
velocity of the source through the air.

 ■ Sound waves are longitudinal.
 ■ As longitudinal waves move through a medium, the 

particles of the medium vibrate parallel to the direc-
tion of propagation.

 ■ Resonance is the condition where a medium res-
ponds to a periodic external force by vibrating with 
the same frequency as the force.

Questions
Light and its properties
 1. Calculate the longest and shortest time for a radio 

signal travelling at the speed of light to go from the 
Earth to a space probe when the space probe is 
(a) near Mars and (b) near Neptune.

   Radius of Earth’s orbit about the Sun 
 = 1.49 × 1011  m 
 Radius of Mars’s orbit about the Sun 
 = 2.28 × 1011  m 
 Radius of Neptune’s orbit about the Sun 
 = 4.50 × 1012  m

 2. How is a periodic wave different from a single 
pulse moving along a rope?

 3. Ripples on a pond are caused when drops of water 
fall on the surface at the rate of 5 drops every 
10 seconds. What is:
(a) the period of the ripples
(b) the frequency of the ripples?

 4. In each of the diagrams below, two waves move 
towards each other. Which diagram or diagrams 
show waves that, as they pass through each other, 
could experience:
(a) only destructive interference
(b) only constructive interference?

A

B

C

 5. Calculate the period of orange light, which has a 
frequency of 4.8 × 1014  Hz.

Wave speed or velocity
 6. What is the speed of sound in air if it travels a 

distance of 996  m in 3.0  s?
 7. How far does a wave travel in one period?
 8. Do loud sounds travel faster than soft sounds? 

Justify your answer.
 9. A marching band on the other side of a sports oval 

appears to be ‘out of step’ with the music. Explain 
why this might happen.
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 10. You arrive late to an outdoor concert and 
have to sit 500  m from the stage. Will you 
hear high-frequency sounds at the same time 
as low-frequency sounds if they are played 
simultaneously? Explain your answer.

 11. A loudspeaker is producing a note of 256  Hz. How 
long does it take for 200 wavelengths to interact 
with your ear?

 12. During an electrical storm the thunder and 
lightning occur at the same time and place. 
Unless the centre of the storm is directly above, 
you see the lightning flash before you hear the 
thunder. How far away is lightning if it takes 5.0  s 
for the sound of thunder to reach you after the 
flash is seen? Assume the speed of sound in air is 
335  m  s−1.

The wave equation
 13. What is the wavelength of a sound that has a 

speed of 340  m  s−1 and a period of 3.0  ms?
 14. What is the speed of a sound if the wavelength is 

1.32  m and the period is 4.0 × 10−3  s?
 15. The speed of sound in air is 340 m s−1 and a note 

is produced that has a frequency of 256  Hz.
(a) What is its wavelength?
(b) This same note is now produced in water 

where the speed of sound is 1.50 × 103  m  s−1. 
What is the new wavelength of the note?

 16. Copy and complete table 9.2 by applying the 
universal wave formula.

TABLE 9.2

v (m s−1) f (Hz) λ (m)

500 0.67

12 25

1500 0.30

  60 2.5

 340 1000

 260 440

Interference
 17. What is superposition and when does it occur?
 18. What is constructive interference and when does 

it occur?
 19 Describe the interference pattern produced when 

two sound sources produce sounds of equal 
frequency in phase. How can you determine 
whether a point on the interference pattern is a 
local maximum or local minimum?

Transverse standing waves in strings
 20. The figure below shows the positions of three sets 

of two pulses as they pass through each other. 

Copy the diagram and sketch the shape of the 
resultant disturbances.

(c)

(a)

(b)

 21. What is the wavelength of a standing wave if the 
nodes are separated by a distance of 0.75  m?

 22. The figure below shows a standing wave in a 
string. At that instant (t = 0) all points of the string 
are at their maximum displacement from their rest 
positions.

  If the period of the standing wave is 0.40  s, sketch 
diagrams to show the shape of the string at the 
following times:
(a) t = 0.05  s
(b) t = 0.1  s
(c) t = 0.2  s
(d) t = 0.4  s.

Sound and standing waves
 23. Kim and Jasmine set up two loudspeakers in 

accordance with the following arrangements:
 They faced each other.
 They were 10  m apart.
 The speakers are in phase and produce a sound 

of 330  Hz.
   Jasmine uses a microphone connected to a 

CRO and detects a series of points between the 
speakers where the sound intensity is a maximum. 
These points are at distances of 3.5  m, 4.0  m and 
4.5  m from one of the speakers.
(a) What causes the maximum sound intensities 

at these points?
(b) What is the wavelength of the sound being used?
(c) What is the speed of sound on this occasion?

 24. A standing wave is set up by sending continuous 
waves from opposite ends of a string. The 
frequency of the waves is 4.0 Hz, the wavelength is 
1.2  m and the amplitude is 10  cm.
(a) What is the speed of the waves in the string?
(b) What is the distance between the nodes of the 

standing wave?
(c) What is the maximum displacement of the 

string from its rest position?
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(d) What is the wavelength of the standing wave?
(e) How many times per second is the string straight?

 25. A standing wave is set up by sending continuous 
waves from opposite ends of a string. The 
frequency of the waves is 4.0  Hz, the wavelength is 
1.2  m and the amplitude is 10  cm.
(a) What is the speed of the waves in the string?
(b) What is the distance between the nodes of the 

standing wave?
(c) What is the maximum displacement of the 

string from its rest position?
(d) What is the wavelength of the standing wave?
(e) How many times per second is the string 

straight?
 26. Explain what is meant by the expression 

‘interference pattern’ when applied to two sound 
sources that are in phase.

 27. Describe the interference pattern produced by two 
sound sources that are in phase.

 28. What happens to cause a nodal line when sound 
is emitted by two sources in phase?

 29. What effect would increasing the wavelength 
of the sound have on the interference pattern 
produced by two sound sources that are in phase?

 30. Two sources in phase emit sound with a 
wavelength of 0.90  m. Describe the loudness 
(louder or softer when compared to that produced 
by a single source) at the following positions:
(a) at an equal distance from both sources
(b) at a distance of 15.45  m from one source and 

14.55  m from the other
(c) at a distance of 15.75  m from one source and 

16.20  m from the other.
Justify your answers.

 31. Two loudspeakers are set up on an open-air stage 
as shown below.

S2

S1 P17.875 m

amplifier

  A sound engineer tests the arrangement by 
feeding a tone of 660  Hz through both speakers. 
For the following questions, assume that:
 the speakers are producing sound in phase
 the speed of sound in air is 330  m  s−1.

(a) What is the wavelength of the sound that is 
produced by each speaker?

(b) The engineer walks directly away from one of 
the speakers until he notices that the sound 
has a minimum value at point P. He accurately 
measures the distance from this point to 
the nearest speaker (S1) and finds that it is 
17.875  m. How far is he from speaker S2? (In 

calculating this distance, assume that P is on 
the first nodal line.)

(c) How far apart are the speakers?
 32. Two loudspeakers in phase produce an 

interference pattern on a sports field. The set-up 
of the apparatus is shown below.

   The speakers produce sound with a wavelength 
of 0.80  m. Suroor walks from point A to point I 
and detects either a loud or very soft sound at the 
points labelled in the diagram.
(a) What causes the variations in the loudness of 

the sound?
(b) Describe the sound (loud or soft) detected at 

point E. Explain your answer.
(c) Describe the sound (loud or soft) detected at 

point D. Explain your answer.
(d) If point D is 20.00  m from speaker S2, how far 

is it from speaker S1?
(e) Suroor stands at point D as her assistant Susie 

slowly increases the frequency while keeping 
the power of the speakers constant. Describe 
the loudness of the sound that Suroor detects as 
the frequency increases. Justify your answer.

S1

S2

I

H

G

F

E

D

C

B

A
Not to scale

Diffraction
 33. (a) What is diffraction?

(b) Why is diffraction an important concept to 
consider when designing loudspeakers?

 34. The figure below shows the design of a dentist’s 
waiting room and surgery.

1.0 m

chair, patient
and drill

A

B
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  There are two people sitting in the waiting room 
at points A and B. The door to the surgery is open 
and has a width of 1.0  m. A drill is operating and 
produces a sound of 5000  Hz frequency. The 
patient groans at a frequency of 200  Hz. Assume 
the speed of sound is 340  m  s−1.
(a) What is the wavelength of the patient’s groan?
(b) What difference, if any, is there between the 

sound intensity levels produced by the patient’s 
groan at points A and B? Justify your answer.

(c) What difference, if any, is there between 
the sound intensity levels produced by the 
dentist’s drill at points A and B? Justify your 
answer.

 35. A 1500  Hz sound and a 8500  Hz sound are emitted 
from a loudspeaker whose diameter is 0.30  m. 
Assume the speed of sound in air is 343  m  s−1. 
(a) Calculate the wavelength of each sound.
(b) Find the angle of the first minimum for each 

sound for this speaker.
(c) A sound engineer wants to use a different 

speaker for the 8500  Hz sound so that it has the 
same angle of dispersion as the 1500  Hz has 
for the 0.30  m diameter speaker. Calculate the 
diameter of the new speaker if this is to occur.

 36. A sound of wavelength λ passes through a gap 
of width w in a barrier. How will the following 
changes affect the amount of diffraction that 
occurs?
(a) λ decreases.
(b) λ increases.
(c) w decreases.
(d) w increases.

The Doppler effect
 37. A trumpeter on a moving train first demonstrated 

the Doppler effect. (Use 340  m  s−1 as the speed of 
sound.)
(a) How fast would the train be travelling if the 

trumpeter played an A ( f = 440  Hz) and the 
observers on the platform heard an A sharp 
( f = 466  Hz)?

(b) What frequency would the observers hear 
once the train had passed?

(c) How fast would the train need to be travelling 
for the pitch of the note to rise a full octave 
(that is, double its frequency)?

 38. Lyn cannot hear sound above 1.5 × 104  Hz. 
She decided to investigate the Doppler effect 
by strapping a speaker to the roof of a car. She 
connects a signal generator to the speaker so that 
it produces a sound of frequency 1.2 × 104  Hz. She 
predicts that if the car is driven towards her with 
sufficient speed she will not be able to hear the 
sound.
(a) At what speed can she no longer hear the 

sound? (Assume there are no other sounds to 
drown it out.)

(b) What does she hear as the car accelerates?
 39. Shelly is concerned about the speed of traffic in 

her street. She measures the dominant frequency 
of the sound of a car as it approaches to be 
1100  Hz, and as it moves away to be 919  Hz. What 
was the speed of the car? (Take the speed of sound 
in air to be 340  m  s−1.)

 40. In this chapter we considered the Doppler 
effect for the case where the source is moving. 
If the source is at rest in air but the receiver is 
moving towards the source with speed v, then 
the frequency heard by the receiver is given by

  f f
v
v

1o
s

= +
⎛
⎝
⎜

⎞
⎠
⎟ , where fo is the frequency of the 

  sources, v is the speed of the receiver and vs is the 
speed of sound.

(a) If the sound source in question 38 was at rest 
in the air and Lyn drove her car towards it, 
what would be her speed when she can no 
longer hear the sound? (Use vs = 340  m  s−1.)

(b) Derive the formula f f
v
v

1o
s

= +
⎛
⎝
⎜

⎞
⎠
⎟ .

 (Hint: Put yourself in the reference frame of 
the sound wave.)



REMEMBER

Before beginning this chapter, you should be able to:
 ■ recall that waves transmit energy without the net transfer 
of matter

 ■ identify the wavelength, period and frequency of a wave
 ■ use the wave equation v = fλ
 ■ explain constructive and destructive interference of waves 
from two point sources with reference to the effect of path 
difference

 ■ explain the diffraction of waves and how the spreading of 
the wave depends on wavelength and gap width.

KEY IDEAS

After completing this chapter, you should be able to:
 ■ describe the bending of light as it passes from one 
medium into another

 ■ use the ray model to describe the refraction of light
 ■ mathematically model refraction using Snell’s Law
 ■ use the ray model of light to describe and explain total 
internal reflection and mirages

 ■ recognise light as part of the electromagnetic spectrum

 ■ apply a wave model to the behaviour of light and the rest 
of the electromagnetic spectrum

 ■ describe the dispersion of light in prisms, lenses and 
optical fibres

 ■ describe polarisation in terms of a wave model
 ■ discuss the results of  Young’s double-slit experiment as 
evidence for the wavelike nature of light in terms of the 
constructive and destructive interference of waves

 ■ interpret the pattern produced by light when it passes 
through a small gap or past an obstacle in terms of the 
diffraction of waves

 ■ make qualitative predictions of changes in diffraction 
patterns due to width of gap or diameter of object or 
wavelength of light

 ■ describe light as an electromagnetic wave that is produced by 
the acceleration of charges, which in turn produces changing 
electric fields and associate changing magnetic fields

 ■ understand that all electromagnetic waves travel at the 
same speed, c, in a vacuum

 ■ compare the wavelengths and frequencies of different 
regions of the electromagnetic spectrum, and identify the 
uses of each region.

CHAPTER

10 Light as a wave

Understanding light as a wave helps to explain many 
physical phenomena.
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Bending of light
Experience shows that when you are 
spearing for fish in the shallows you must 
aim the spear below where the fish 
appears to be in the water. At the beach or 
in a pool, people standing in the shallows 
appear to have shorter legs. Our percep-
tion is distorted, but the reason is not 
apparent.

When we set up a special situation, such 
as in the figure at right, where a straight 
rod is placed in a beaker of liquids that do 
not mix, the idea of change of direction of 
the light is apparent. This change in direc-
tion is called refraction.

The ray model can help explain our observations of light. If a fish seems 
closer to the surface of the water, the ray of light from the fish must have bent. 
To our eye, the ray seems to be coming from another direction. Given that light 
can travel both ways along a light path, the fish will see the spear thrower fur-
ther towards the vertical.

The rays from the fish bend 
when they enter the air. To the 
eye, the rays appear to come 
from a point closer to the 
surface.

air
water

Fish appears 
to be here.Fish is here.

The ray model not only gives us a way of describing our observations of the 
bending of light, but also of taking measurements. The angle that a ray of light 
makes with the normal, angle of incidence and angle of refraction can be 
measured and investigated.

Snell’s Law
In 1621, the Dutch physicist Willebrord Snellius (1580–1626), known in the 
English speaking world as Willebrand Snell, investigated the refraction of light 
and found that the ratio of the sines of the angles of incidence and refraction 
was constant for all angles of incidence.

The diagram on page 228 shows how an incident ray is affected when it 
meets the boundary between air and water. The normal is a line at right angles 
to the boundary, and all angles are measured from the normal. Some of the 
light from the incident ray is reflected back into air. The rest is transmitted into 
the water. The following ratio is a constant for all angles for light travelling from 
air to water:

sin
sin

constant.i

r

θ
θ

=

Digital doc
Investigation 10.1
Seeing is believing
doc-18551

Refraction is the bending of light 
as it passes from one medium into 
another.

Unit 4 Refraction
Concept summary 
and practice 
questions

AOS 1

Topic 2

Concept 3

The angle of refraction is the 
angle between a refracted ray and 
the normal.

An example of refraction
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AS A MATTER OF FACT

Snell’s Law was first discovered by Abu Sa‘d Ibn Sahl (c. 940 – c. 1000), a 
Muslim physicist in the court in Baghdad, in 984. He reported his findings 
in his book On burning mirrors and lenses. Ibn Sahl used the relationship 
to design a shape for lenses that overcame the problem of spherical aber-
ration. Ptolemy (c. 100 – c. 170), a Greco-Egyptian mathematician, had 
investigated refraction much earlier, compiling a table of angles for light 
travelling from air into water.

Snell repeated his experiments with different substances and found that 
the ratio was still constant, but it had a different value. This suggested that dif-
ferent substances bend light by different amounts. (Remember that some light 
is always reflected.)

In fact, there is a different ratio for each pair of substances (for example air 
and glass, air and water). A different ratio is obtained for light travelling from 
water into glass. The value of the ratio is called the relative refractive index 
because it depends on the properties of two different substances.

The bending of light always involves 
light travelling from one substance to 
another. It is not possible to find the effect 
of a particular substance on the deflec-
tion of light without adopting one sub-
stance as a reference standard. Once you 
have a standard, every substance can be 
compared with it. A natural standard is a 
vacuum — the absence of any substance. 
The absolute refractive index of a 
vacuum is given the value of one. From 
this, the absolute refractive index of all 
other substances can be determined. 
Some examples are given in table 10.1. 
(The word ‘absolute’ is commonly omitted 
and the term ‘refractive index’ usually 
refers to the absolute refractive index.)

The refractive index is given the symbol 
n because it is a pure number without any 
units. This enables a more useful restate-
ment of Snell’s Law, for example:
 nair sin θair = nwater sin θwater.

The ratio sin θ i
sin  rθ  is constant for 

all angles for light travelling 
from air to water.

incident ray

boundary

angle of
incidence

angle of 
reflectionnormal

reflected ray

refracted ray
angle of
refraction

θr

θiθi
air
water

Relative refractive index is 
a measure of how much light 
bends when it travels from any 
one substance into any other 
substance.

eLesson
Refraction of light and Snell’s Law
eles-0037

Interactivity
Refraction of light and Snell’s Law
int-0056

The absolute refractive index of a 
substance is the relative refractive 
index for light travelling from a 
vacuum into the substance. It 
is commonly referred to as the 
refractive index.

TABLE 10.1 Values for absolute 
refractive index

Material Value

Vacuum 1.000  0

Air at 20°C and 
normal atmospheric 
pressure

1.000  28

Water 1.33

Perspex 1.49

Quartz 1.46

Crown glass 1.52

Flint glass 1.65

Carbon disulfide 1.63

Diamond 2.42
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More generally this would be expressed as follows:
n1 sin θ1 = n2 sin θ2.

A graphical depiction of 
Snell’s Law for any two 
substances. Note that the light 
ray has no arrow, because the 
relationship is true for the ray 
travelling in either direction.

medium 1
refractive index n1

medium 2
refractive index n2

boundary

normal

θ2

θ1

n1 sin θ1  =  n2 sin θ2

Sample problem 10.1

A ray of light strikes a glass block of refractive index 1.45 at an angle of inci-
dence of 30°. What is the angle of refraction?
nair = 1.0, θair = 30°, nglass = 1.45, θglass = ?
1.0 × sin 30° = 1.45 × sin θglass (substitute values into Snell’s Law)

 sin  
sin 30

1.45glassθ = °
  (divide both sides by 1.45, the refractive  

index of glass)
 = 0.3448 (calculate value of expression)
⇒ θglass = 20.17°  (use inverse sine to find the angle whose sine 

is 0.3448)
⇒ θglass = 20° (round off to two significant figures)

Revision question 10.1

A ray of light enters a plastic block at an angle of incidence of 40°. The angle of 
refraction is 30°. What is the refractive index of the plastic?

AS A MATTER OF FACT

Light can be bent by a strong gravitational field, such as that near the 
Sun. The gravitational field can act like a convex lens. Light from a distant 
star that is behind and blocked by the Sun bends around the Sun so that 
astronomers on Earth see an image of the star to the side of the Sun.

Limitations of the ray model
So far in this chapter we have used the ray model to describe how light is 
refracted. Ray diagrams illustrate Snell’s Law and have allowed us to visualise 
a range of optical phenomena such as mirages and to develop technologies 
such as optical fibres. However, the ray model, which views light as a pencil 
thin beam, does not offer an explanation of why light refracts. More sophisti-
cated models are needed to provide an explanation for refraction, and in doing 
so they suggest further experiments to investigate the properties of light more 
deeply, and to develop new technologies.

Solution:
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T wo very different models of light were developed in the seventeenth 
century — one by Sir Isaac Newton (1642–1727) in England and the other by 
Christiaan Huygens (1627–1695) in Holland.

Huygens proposed that light 
travelled outwards from a 
source like circular ripples 
on a pond.

Newton’s model was described as a ‘particle model’. In his model, light con-
sists of a stream of tiny, mass-less particles he called corpuscles. The particles 
stream from a light source like water from a sprinkler.

Huygens proposed a wave model of light, where light travels in a similar way 
to sound and water waves. Light leaves a source in the same way that water 
ripples move out from a dropped stone. The disturbance of the water surface 
travels outwards from the source.

How do the two models explain the properties of light?
How light travels
Newton’s particle model: Once ejected from a light source the particles 
continue in a straight line until they hit a surface.
Huygens’s wave model: Huygens proposed a basic principle: ‘Every 
point in the wavefront is a source of a small wavelet. The new wavefront is 
the envelope of all the wavelets.’

Every point in the wavefront is a 
source of a small wavelet. The 
new wavefront is the envelope of 
all the wavelets.

Source

S

Reflection of light
Newton’s particle model: As particles approach a surface they are 
repelled by a force at the surface that slows down and reverses the normal 
component of the particle’s velocity, but does not change its tangential 
component. The particle is then reflected from the surface at an angle 
equal to its angle of approach. The same process happens when a billiard 
ball hits the cushion.

Weblink
Huygens’s principle applet
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mirror

i i'
Newton’s particle model of reflection

Huygens’s wave model: As each part of the wavefront arrives at the sur-
face, it produces a reflected wavelet. The new wavelets overlap to pro-
duce the next wavefront, which is travelling away from the surface at an 
angle equal to its angle of approach.

mirror AE

B F

D C The wave model of reflection. C and 
D are parallel, incoming rays. AB is 
the wavefront. When A hits the mirror 
a circular wavelet is produced. By the 
time B has reached the mirror at E, the 
reflected wavelet has travelled out to F. 
The line EF is the reflected wavefront.

Refraction of light
Newton’s particle model: In approaching a denser medium, the particles 
experience an attractive force which increases the normal component of 
the particle’s velocity, but does not affect the tangential component. This 
has the effect of changing the direction of the particles, bending them 
towards the normal where they are now travelling faster in the denser 
medium. Snell’s Law can be explained by this model.

water
r

i
air The particle model of refraction. 

The particles are pulled towards the 
denser medium, resulting in a change 
in direction.

Huygens’s wave model: When the wavefront meets a heavier medium 
the wavelets do not travel as fast as before. This causes the wavefront to 
change direction. In this case the wavefront bends towards the normal 
when it enters a medium where the wave is slowed down. Snell’s Law can 
be explained by this model.

water
air

A
E

B

F

D

C

The wave model of refraction. C and D are parallel, incoming rays. AB is the 
wavefront. When A hits the surface a circular wavelet of slower speed and 
so smaller radius is produced. By the time B has reached the surface at E, 
the refracted wavelet has only gone as far as F. The line EF is the refracted 
wavefront, heading in a direction bent towards the normal compared to the 
incoming wavefront, AB.
 

Digital docs
Investigation 10.2 
Refraction of particles
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Investigation 10.3 
Refraction of waves
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(continued)
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A point of difference
Now, with these two explanations of refraction, there is a clear distinc-
tion between the two models. When light bends towards the normal as 
it enters water (a denser medium), the particle model says it is because 
light travels faster in water (the denser medium), whereas the wave 
model says it is because the light is travelling slower.

In the seventeenth century they did not have the technology to 
measure the speed of light in water. However, the particle model became 
the accepted explanation, partly because of Newton’s status, and partly 
because Huygens’s principle suggested that light should bend around 
 corners like sound, and there was no evidence of this at the time. 
(Newton himself actually thought that the particles in his model needed 
to have some wave-like characteristics to explain some of his other 
observations of light and colour.)

New evidence emerges
In 1802, Thomas Young (1773–1829) showed that in fact light 
could bend around an edge. This is covered in some detail on 
pages  239–42. This was convincing evidence for the wave model, 
as the particle model had no mechanism to explain how particles 
could bend around a corner. However, the status of Newton was 
such that not all were convinced by Young’s results. It was suggested 
that conclusive evidence would be to measure the speed of light in 
water and see if it was faster or slower than that in air. Jean Bernard 
Leon Foucault (1819–1868) and Hippolyte Fizeau (1819–1896)  
competed to measure the speed of light in water; in 1850, both of 
them showed that light was slower in water, though Foucault won by 
seven weeks.

Speed of light in glass
Foucault and Fizeau’s results, along with the work of Augustin-Jean Fresnel 
(1788–1827) (pronounced ‘fray-NEL’), showed that the speed of light in water 
was less than the speed of light in air. This allowed scientists to determine the 
physical meaning of the refractive index:

absolute refractive index of water = 
speed of light in a vacuum

speed of light in water
where
speed of light in a vacuum = 3.0 × 108  m  s−1.

The above formula can be re-arranged to give 
nwater × vwater = c

where c = the speed of light in a vacuum

vwater = the speed of light in water.

 Similarly for glass, nglass × vglass = c, which means nglass × vglass = nwater × vwater, 
or as a general relationship:
n1v1 = n2v2 for any two materials.

Sample problem 10.2

(a) The refractive index of glass is 1.5. How fast does light travel in glass?
(b) Use the answer to (a) to determine the speed of light in water.
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(a)  1.5 = 
3.0 10

(speed of light in glass)

8×

 ⇒ speed of light in glass = 
3.0 10

1.5

8×
  (rearrange formula to get the 
unknown by itself)

  = 2.0 × 108  m  s−1.
(b) v

v

v

1.5 2.0 10 ms 1.33

1.5 2.0 10 ms
1.33

2.3 10 ms

8 1
water

water

8 1

water
8 1

× × = ×

= × ×

= ×

−

−

−

Revision question 10.2

(a) How fast does light travel in diamond?
(b) Use the answer to (a) to determine the speed of light in carbon disulfide.

Total internal reflection and 
critical angle
Light can play some strange tricks. Many of these involve refraction away 
from the normal and the effect on light of a large increase in the angle of 
incidence.

There are no mirrors in a fish tank but strange reflections can be seen. It appears 
that light is being reflected off the side of the fish tank and the water surface.

It has already been mentioned that some light is reflected off a transparent 
surface, while the rest is transmitted into the next medium. This applies 
whether the refracted ray is bent towards or away from the normal. However, a 

Solution:
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special situation applies when the refracted ray is bent away from the normal. 
This is illustrated in the figure below. As the angle of incidence increases,  
the angle of refraction also increases. Eventually the refracted ray becomes 
parallel to the surface and the angle of refraction reaches a maximum 
value of 90° (see figure (b)). The corresponding angle of incidence is called 
the critical angle. If the angle of incidence is increased beyond the critical 
angle, all the light is reflected back into the water, with the angles being the 
same. This phenomenon is called total internal reflection (see figure (c)).

Three stages of refraction leading to total internal reflection

air

water

(a) Before critical angle (b) At critical angle (c) After critical angle
     (total internal reflection)

θiθi

θr

θcθc

The critical angle can be calculated using Snell’s Law, n1 sin (θc) = n2 sin (90°).

Sample problem 10.3

What is the critical angle for water given that the refractive index of water 
is 1.3?

nair = 1.0, θair = 90°, nwater = 1.3, θwater = ?

1.0 × sin 90° = 1.3 × sin θwater (substitute data into Snell’s Law)

⇒ sin
sin 90

1.3waterθ = °
  (rearrange formula to get the unknown 

by itself)
  = 0.7692  (determine sine values and calculate 

expression)
⇒ θwater = 50.28° (use inverse sine to find angle)
 θwater = 50° (round off to two significant figures)

Revision question 10.3

A glass fibre has a refractive index of x and its cladding has a refractive index 
of y. What is the critical angle in the fibre?

Total internal reflection is a relatively common atmospheric phenomenon (as 
in mirages) and it has technological uses (for example, in optical fibres).

Mirages
There are several types of mirage that can be seen when certain atmospheric 
conditions enable total internal reflection to occur. These mirages appear 
because the refractive index of air decreases with temperature.

The critical angle is the angle 
of incidence for which the angle 
of refraction is 90°. The critical 
angle exists only when light passes 
from one substance into a second 
substance with a lower refractive 
index.

Total internal reflection is the 
total reflection of light from a 
boundary between two substances. 
It occurs when the angle of 
incidence is greater than the 
critical angle.

Solution:
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A common type of mirage occurs in the desert or above a road on a sunny 
day. As displayed in the figure below, at ground level the air is hot (A) with a 
refractive index close to 1 (B). As height increases, the temperature of the air 
decreases (C) and its refractive index increases (D).

temperature

A D 

B C

refractive index

refractive
index
increasing

temperature
increasing

high

low

1.0 (vacuum)

1.000 28
(normal air)

ground
level

tree
level

height

Temperature and refractive index profiles for the mirage phenomenon

Rays of light from a car, for example, go in all directions. The air above the 
ground can be considered as layers of air. The closer to the ground, the higher the 
temperature and the lower the refractive index. As a ray moves into hotter air, it 
bends away from the normal. After successive deflections, the angle of incidence 
exceeds the critical angle for air at that temperature and the ray is totally inter-
nally reflected. As the ray emerges, it follows a similar path, refracting towards the 
normal as it enters cooler air. An image of the car can be seen below street level 
(see the figure below). The mirage is upside down because light from the car has 
been totally internally reflected by the hot air close to the road surface.

warm air

hot air

road

Another mirage that depends on layers of air at different temperatures is 
known as the ‘Fata Morgana’ in which vertical streaks, like towers or walls, 
appear. This occurs where there is a temperature inversion — very cold at 
ground level and warmer above — and very stable weather conditions.

The phenomenon is named after Morgan le Fay (Fata Morgana in Italian) who 
was a fairy and half-sister to King Arthur of the Celtic legend. She used mirages to 
show her powers and, in the Italian version of the legend, lived in a crystal palace 
under the sea. The mirage is often seen in the Strait of Messina and over Arctic ice. 
As shown in the figure below, the light rays from a distant point are each refracted 
by the different layers of air, arriving at different angles to the eye. The effect is that 
the point source (P) becomes a vertically extended source, like a tower or wall.

rough
sea
ice P

Mirages such as this are 
common on hot, sunny days.

The mirage of the car appears 
upside down due to total 
internal reflection in the hot air 
close to the ground.

Weblink
Mirages and more

Ray paths for the Fata 
Morgana
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An example of the Fata 
Morgana over an ice field in 
the Arctic Ocean off the coast 
of Svalbard. The conditions 
that encourage the Fata 
Morgana are particularly 
common in the polar regions 
over ice.

Optical fibres
Another example of total internal reflection is in the important technological 
application of optical fibres. Optical fibres have become a feature of modern 
life. A thin, flexible cable containing an optical fibre can be placed inside a per-
son’s body to transmit pictures of the condition of organs and arteries, without 
the need for invasive surgery. The same can be done in industry when there is 
a problem with complex machinery.

Optical fibres are also the basis of the important telecommunications 
industry. They allow high quality transmission of many channels of infor-
mation in a small cable over very long distances and with negligible signal loss.

An optical fibre is like a pipe with a light being shone in one end and coming 
out of the other. An optical fibre is made of glass which is about 10 micro metres 
(10 × 10−6  m) thick. Light travels along it as glass is transparent, but the fibre 
needs to be able to turn and bend around corners. The optical fibre is designed 
so that any ray meeting the outer surface of the glass fibre is totally internally 
reflected back into the glass. As shown in the figure below, the light ray meets 
the edge of the fibre at an angle of incidence greater than the critical angle and 
is reflected back into the fibre. In this way, nearly all of the light that enters the 
fibre emerges at the other end.

A light ray travels along an optical fibre through total internal reflection.

optical fibre

light ray

If the glass fibre is exposed to the air, the critical angle for light travelling 
from glass to air is 42°, which is quite small. Any angle of incidence greater 
than this angle will produce total internal reflection. If the fibre is very narrow, 
this angle is easily achieved.

However, in both medical and telecommunication uses, fibres are joined 
in bundles with edges touching. The touching would enable light rays to pass 
from fibre to fibre, confusing the signal. To overcome this, a plastic coating is 
put around the glass to separate the glass fibres. The total internal reflection 
occurs between the glass and the plastic. The critical angle for light travelling 

An optical fibre is a thin tube of 
transparent material that allows 
light to pass through without being 
refracted into the air or another 
external medium.

A bundle of optical fibres. 
Each fibre in the bundle 
carries its signal along its 
length. If the individual 
fibres remain in the same 
arrangement, the bundle will 
emit an image of the original 
object.

Weblink
Fibre optics
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from glass to plastic is 82°. This value presents a problem because light meeting 
the edge of the glass at any angle less than 82° will pass out of the fibre.

This has implications for the design of the optical fibre and the beam of light 
that enters the fibre. The fibre needs to be very narrow and the light entering 
the fibre has to be a thin beam with all the rays parallel.

82°

optical fibre

light rays

Dispersion: producing colour from white light
White light can be separated into colours using a narrow beam of light and 
a glass triangular prism. This phenomenon is called dispersion. It was first 
analysed in this way by Isaac Newton in 1666, although René Descartes had 
sought an explanation for rainbows in 1637 by working with a spherical glass 
flask filled with water.

As light enters a triangular glass prism, it is refracted towards the normal. It 
then travels through the prism to the other side where it is refracted away from 
the normal, because the light is re-emerging into the air.

The colours in white light separate as they 
enter the glass and separate even more 
when they leave. At each edge, the violet is 
deflected more than the red.

white
light

glass prism

The colours spread as they enter the glass and travel on different paths 
through the triangular prism. They are spread even more as they leave the 
glass. Violet is bent the most and red the least. The order of the colours, from 
the colour that bends least to the colour that bends most, is: red, orange, 
yellow, green, blue, indigo, violet.

A spectrum of colours is 
produced when white light 
is passed through a prism. 
The red light is deflected the 
least and each colour in 
the spectrum is deflected 
progressively more.

Light rays entering the fibre 
at too sharp an angle are 
refracted out of the fibre.

Dispersion is the separation of 
light into different colours as a 
result of refraction.

Digital doc
Investigation 10.5
Separating colours
doc-18555
Interactivity
Spreading the spectrum
int-6609
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Each colour has a different angle of refraction. This means that the glass has 
a different refractive index for each colour. This can be expressed as a state-
ment of Snell’s Law as follows: 

nair sin θi = ngl (red) sin θred = ngl (violet) sin θviolet.

For example, as shown in the figure below, violet light is bent more than red, 
so θviolet is smaller than θred. This means that the refractive index of glass for 
violet light is greater than that for red light. This is also true for other materials 
(see table 10.2).

The angle of refraction for violet light is smaller than that for red light. This means 
that the refractive index of the glass is different for different colours. For violet it 
must be greater than that for red.

incident
ray

glass

airboundary
θi

θv

θr

refracted rays

normal

 

TABLE 10.2 Refractive index values vary for different coloured light

Index of refraction

Colour Crown glass Flint glass Diamond Water

Red 1.514 1.571 2.410 1.331

Yellow 1.517 1.575 2.418 1.333

Deep blue 1.528 1.594 2.450 1.340

PHYSICS IN FOCUS

Sparkling physics
Diamonds are cut by a gem-maker so that when light enters the dia-
mond it strikes a few faces at angles greater than the critical angle. This 
maxi mises the light path and increases the separation of the colours that 
occurred when the light first entered the diamond.

The appearance of white paint as white is actually due to the large 
amount of refraction and dispersion created by the titanium dioxide par-
ticles it contains. A large percentage of the light that hits a white surface 
is reflected back, the colours go in all directions and hence the surface 
appears white.

Unit 4 Dispersion
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Rainbows
Rainbows are a common example of the dispersion of light. However, they are 
not seen only in the sky. You can also see a rainbow when you use a garden 
hose. Three conditions are necessary for a rainbow to be visible:

the Sun
some water droplets in the air
an observer.
The usual arrangement of these three elements for a rainbow to be seen is to 

have the Sun behind the observer and water in the air in front of the observer. 
The water drops separate the colours in a similar way to that which occurs with 
the glass prism. The big difference is that, before the colours emerge from the 
water droplet, they are reflected from the opposite surface of the droplet.

Each droplet of water in the air 
spreads the colours. Person A sees 
a rainbow from raindrops in the air 
between droplet 2 and droplet 3. 
Person B sees a rainbow between 
droplet 1 and droplet 2.

person A

person B

droplet
1

droplet 
2

droplet
3

sunlight
sunlight

40°
42°

sunlight

When you see a rainbow, each colour is coming from a separate raindrop in the 
sky. If the red light from a raindrop is entering your eye, then the violet light from 
that raindrop is going over your head to someone else. Each person sees his or her 
own personal rainbow. Your rainbow depends on raindrops in the sky being at a 
particular point so that the angle between you, the Sun and the raindrops is 
approximately 42°. The rainbow is not an image in the sky that everyone can see.

When the sky is very dark, a second, fainter rainbow may be visible on the out-
side of the bright one. This is due to the sunlight entering higher raindrops at the 
bottom and reflecting off the inside of the drop twice before emerging into the air.

Young’s experiment
Thomas Young (1773–1829) was keenly interested in many things. He has 
been called ‘the last man who knew everything’. He was a practising  surgeon 
as well as a very active scientist. He analysed the dynamics of blood flow, 
explained the accommodation mechanism for the human eye and proposed 
the three-receptor model for colour vision. He also made significant contribu-
tions to the study of elasticity and surface tension. His other interests included 
deciphering ancient Egyptian hieroglyphics, comparing the grammar and 
vocabulary of over 400 languages, and developing tunings for the twelve notes 
of the musical octave. Despite these many interests, the wave explanation of 
the nature of light was of continuing interest to him. 

Weblink
Formation of a rainbow applet

raindrop

light
ray

A light ray enters the bottom 
of the raindrop, is reflected 
twice off the wall of the 
raindrop, then emerges. 
The ray enters the eye at a 
higher angle than the primary 
rainbow. The colours are 
spread as they enter the 
raindrop and grow further 
apart the longer they are in the 
raindrop.
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Young had already built a ripple tank to show that the water waves from two 
point sources with synchronised vibrations show evidence of interference. He 
was keen to see if he could observe interference with two beams of light. He 
held a fine hair close to his eye while staring past it at a distant candle. The 
light from the candle flame passed on both sides of the hair to reach his eyes. 
He did not notice a scattering of light in all directions as predicted by the par-
ticle model. Instead, a beautifully coloured pattern of bands parallel to the hair 
spread out across his view of the candle. Young’s interpretation of what he saw 
was that light behaved like waves as it spread out from the candle.

It occurred to me that their cause must be sought in the interference of two portions 
of light, one reflected from the fibre, the other bending round its opposite side, and 
at last coinciding nearly in the direction of the former portion.

Young described this and other experiments in lectures at the Royal 
Institution in London in 1801 and 1802. He did not convince his audience! 
His listeners were reluctant to remove their confidence from the particle 
model that Newton apparently supported. Young was determined to produce 
quantitative evidence of the phenomenon that he had observed. He analysed 
the published results of similar experiments performed by Newton and made 
further measurements of his own.

In one of his experiments Young made a small hole in a window blind. He 
placed a converging lens behind the hole so that the cone of sunlight became 
a parallel beam of light. He then allowed light from the small hole to pass 
through two pinholes that he had punctured close together in a card. On a 
screen about two metres away from the pinholes he again noticed coloured 
bands of light where the light from the two pinholes overlapped. The diagram 
below shows Young’s experimental arrangement.

Young’s experiment

parallel beam
of light

screen

two pinholes
in a card

window
blind

hole in blind

converging
lens

2 m

light and
dark bands

Young deliberately had just one source, the hole in the blind, because he 
wanted the one wavefront to arrive at the two pinholes, so that light coming 
through one pinhole would be synchronised with the light coming though the 
other pinhole. Today we would describe light coming from the two pinholes as 
coherent. In the language of the previous chapter, the two waves are in phase. 
If Young had used two separate sources of light, one for each pinhole, their 
light would have been incoherent, with a random relationship between the 
light coming from the two pinholes and no discernible pattern on the screen.
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A light pattern produced by 
a modern performance of 
Young’s experiment

Interpreting Young’s experiment
Young used the wave model for light to analyse his observations. Each hole in the 
window blind is a source of spherical waves. When these waves pass through 
the pinholes, each pinhole becomes a source of spherical waves. Waves from the 
two  pinholes overlap on the screen, and their effects add together to produce 
the pattern. In reaching a particular point on the screen, waves have travelled 
from the source along two alternative routes, through one pinhole or the other. The 
difference between the lengths of the two paths is called the path difference. If the 
path difference results in the crests of the wave from one pinhole always meeting 
the troughs of the wave from the other pinhole (that is, exactly out of phase) then 
destructive interference occurs and that place on the screen is a dark band. Destruc-
tive interference occurs when the path difference is a whole number, minus one 
half, multiplied by the wavelength of the light: (n − 0.5)λ where n = 1, 2,  .  .  . is the 
number of bright bands from the central bright band. A bright band occurs when, 
in spite of a path difference, the waves are in phase: crests reinforcing crests and 
troughs meeting troughs.

view of
screen

path 
difference

Dark______ 5/2λ
Bright__ 2λ
Dark______ 3/2λ
Bright__ 1λ
Dark______ 1/2λ
Bright__ 0λ
Dark______ 1/2λ
Bright__ 1λ
Dark______ 3/2λ
Bright__ 2λ
Dark______ 5/2λ

middle

original

S1
P

S2

The wave model describes the two-slit interference pattern. Maximum intensity 
occurs for the maximum amplitude light wave, because of constructive 
interference. At P, S2 P − S1P = λ.

Weblink
The atomic lab:
wave interference

Path difference is the difference 
between the lengths of the paths 
from each of two sources of waves 
to a point.



UNIT 4 242

(a) Constructive interference of waves arriving in phase, (b) destructive interference 
of waves arriving exactly out of phase, and (c) interference of two waves slightly 
out of phase

source 1

source 2

source 1

source 2

P

source 1

source 2

P

source 1

source 2

P

=+

constructive
interference

source 1

source 2

=+

destructive
interference

source 1

source 2

=+

interference

(a)

(b)

(c)

This constructive interference occurs when the path difference is a whole 
number multiple of the wavelength of the light, nλ, again where n = 1, 2,  .  .  .  is 
the number of bright bands from the central bright band.

Think about performing Young’s experiment with a light source emitting light 
of only one wavelength, say 600 nm (6 × 10 −7  m) in the richly yellow part of the 
spectrum. Constructive interference will occur if the path difference between the 
two routes to the screen is 0, 600  nm, 1200 nm, 1800  nm,  .  .  . n × 600  nm, where 
n is an integer. However, if the path difference is 300  nm, 900  nm, 1500  nm .  .  .  
(n – 0.5)  × 600  nm, where n is an integer, then there will be destructive 
interference.
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Sample problem 10.4

Red light of wavelength 640  nm is passed through a pair of slits to produce 
an interference pattern.
(a) What is the path difference for the third bright band from the central bright 

band?
(b) Consider the second dark band from the central bright band. How much 

further is S2 than S1 from the second dark band?
(c) Red light is replaced with purple light. What happens to the interference 

pattern?

(a) The third bright band has a path difference of 3λ. Thus the path difference 
is 3 × 640 = 1920  nm.

(b) The second dark band arises because of destructive interference where the 
 path difference is λ3

2
. This means S2 is further away from this dark band 

 than S1 by a distance:

λ = × =3
2

3 640
2

910 nm.

(c) The pattern is now purple and because the wavelength for purple light is 
less than for red light. The pattern is now more compact or compressed.

Revision question 10.4

A student creates an interference pattern using green light of wavelength 
530  nm. The pattern is shown below.

A

central maximum

B

(a) Calculate the path difference for the points marked A and B.
(b) The student increases the distance between the two slits. Describe what 

happens to the pattern.
(c) She now changes the light source from green to red. Describe what happens 

to the pattern now.
(d) Explain why the interference pattern is strong evidence for the wave nature 

of light.

Spacing of bands in an interference pattern
The previous section developed expressions relating the path difference to the 
light and dark bands in an interference pattern. These expressions are impor-
tant in understanding Young’s experiment, but the path difference cannot be 
measured. What can be measured in this experiment is:

the separation of the two slits, d
the wavelength, λ
the distance of the screen from the two slits, L
 the spacing between alternate bands in the pattern (either the bright or dark 
bands), Δx.

Solution:
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A relationship between these four quantities would be useful. It could be 
used to calculate the wavelength of an unknown light source from a slide with 
a known slit separation, or to calculate an unknown lit separation with light of 
a known wavelength.

If the separation of the two slits, d, is very much less than the distance L, 
then the two lines S1P and S2P are effectively parallel, as in figure 2 below. 
 Typically d is about 1 mm and L is about 2 metres.

Figure 1

d

path difference

L

Pattern
on screen

S1

P

xn

Δx

θ
θ

xn+1

S2

Figure 2

S1

S2

θ

d

to P

to P

Z
θ

S1Z is a line drawn across the two light paths at right angles. The distances 
from S1 to P and from Z to P will be equal to each other. This means the path 
difference is S2Z. From the right-angled triangle with corners at S1, Z and S2, 

and a right angle at Z, 
d

sin
path difference

,θ =  or path difference = d sin θ.

For bright lines, d sin θ  = nλ, where n = 1, 2, 3, .  .  .  

From figure 1, θ = x
L

tan ,n  but for small angles less than 10°, tan θ and sin θ 

have similar values to within about 1%.

So, for small angles, λ =n
d

x
L

,n

giving  x
n L

d
,n

λ=

and for n + 1,  x
n L

d
( 1)

.n 1
λ= +

+

The spacing between adjacent bright lines is given by:

x x x
L

d
.n n1

λ− = ∆ =+
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Sample problem 10.5

Sodium light of wavelength 589  nm is directed at a slide containing two slits 
0.500  mm apart. What will be the spacing between the bright bands in the 
interference pattern on a screen 1.50  m away?

λ = 589  nm, L = 1.50  m, d = 0.500 × 10–3  m, Δx = ?

λ∆ =

= × ×
×

=
=

−

−

x
L

d
5.89 10 1.50

0.500 10
0.001 77 m

1.8 mm

9

3

Revision question 10.5

Interference bands are formed on a screen 2.00  m from a double slit with separ-
ation 1.00  mm. The bands are measured to be 1.30  mm apart. 
(a) What is the wavelength of the light?
(b) What is its colour?
(c) How would the pattern change if blue light was used?
(d) How could the experimental design be changed to make it easier to measure 

the line spacing in the pattern?

Other interference experiments
Newton’s rings
The phenomenon that came to be called Newton’s rings was first observed by 
Robert Hooke in 1664. If a planoconvex lens, that is, a lens that is flat on one 
side and curved on the other, is placed on a very flat piece of glass, then con-
centric bands can be observed when you look down from above. With white 
light, the bands have rainbow edges. In 1717 Isaac Newton observed the bands 
and used different colours to calculate the thickness of the air space at the first 
band for each colour. However, he did not see the phenomenon as supporting 
the wave model of light.

Thomas Young thought the explanation for this phenomenon was interfer-
ence from light travelling by two different paths. The short path was for the 
light reflected from the bottom surface of the lens at A; the long path was for 
the light transmitted at A, then reflected at B and back through the lens at C. 
The path difference ABC was related to the thickness of the air gap.

Thus, Young was able to measure, for the first time, the wavelengths of the 
different colours in the visible spectrum. Young also applied this method to the 
newly discovered ‘dark’ light and showed that it had a shorter wavelength than 
violet light. Hence, the ‘dark’ light became known as ‘ultraviolet’ light. This led 
Young to speculate that radiation from hot objects might be of a similar nature 
but beyond red light in wavelength.

Fresnel’s biprism
In 1818 Augustin-Jean Fresnel refined Young’s experimental design using a 
biprism to produce the effect of a double slit. Fresnel also designed a new lens 
for use in lighthouses. His design, now called a Fresnel lens, enables the con-
struction of lenses that have the same focal length as standard lenses but are 
thinner and lighter in weight.

Solution:

Newton’s rings

A

B
C

How light creates the effect 
known as Newton’s rings
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S1

S2

S

slit biprism

central bright
region

screen

d

x
Fresnel’s biprism

Lloyd’s mirror
In 1834 Humphrey Lloyd (1800–1881) showed that an interference pattern 
could also be produced when a point light source was placed at a low angle 
relative to a glass slab. The path difference between the reflected ray off the 
slab and the ray that travelled directly to the screen was small enough for 
constructive and destructive interference to occur. This effect also occurs in 
underwater acoustics.

source

screen

region of
interference
on screen

virtual image
of source

glass slab

S

h

S'
Lloyd’s mirror

Diffraction of light
Chapter 9 describes diffraction as one of the defining properties of waves. How-
ever, the word ‘diffraction’ was coined by Francesco Grimaldi (1618–1663) 
to describe a specific observation he made of light. He observed that when sun-
light entered a darkened room through a small hole, the spot was larger than 
would be expected from straight rays of light. He also noted that the border of 
the spot was fuzzy and included coloured fringes. He observed a similar effect 
when light passed a thin wire or a strand of hair. There is also some evidence 
that he repeated the experiment with two adjacent holes and observed evi-
dence of cancellation: ‘That a body actually enlightened may become obscure 
by adding new light to that which it has already received.’ Grimaldi did not give 
an explanation for these observations in terms of waves or particles.

Newton was aware of Grimaldi’s observation of ‘diffraction’. He interpreted 
it using his particle model, arguing that the observed effect was due to light 
particles interacting with the edges of the hole as a refraction effect. He argued 
that if light was a wave, the bending would be much greater. Newton’s conclu-
sions on the particle model were enough for scientists even a hundred years 
later, in Young’s time, to doubt any experimental evidence supportive of the 
wave model.

However, with improving technology, the investigation of the diffraction of 
light revealed more than just the observation of spreading.

The pattern had a central bright region with narrower and less bright regions 
either side.

Diffraction of red light



247CHAPTER 10 Light as a wave

There was a dark gap between the bright regions.
The central region was twice as wide as the other regions, which were all 
about the same size.
The pattern for red light is more spread out than that for blue light.

pattern displayed
on screen

relative
intensity

pattern displayed
on screen

relative
intensity

Relative intensity and diffraction patterns for (a) blue light and (b) red light

The pictures and graphs above of the diffraction of light confirm that light 
satisfies the same relationships as other waves, that is:

the amount of spreading is proportional to the wavelength, λ
the amount of spreading is proportional to the inverse of the gap width, w

1 .

The dark gap between the bright bands is worthy of closer examination. 
According to Huygens’s wave model, each point on a wave front produces 
 circular waves that overlap to produce the next wavefront. When a straight 
wavefront meets a small gap, each point in the gap produces circular waves, 
which means the next wavefront spreads out to be wider than the gap.

Now let us investigate what happens off to the side. Consider the rays travel-
ling at an angle θ such that:

θ λ=
w

sin .

a1

b1w !

"

group a

group b

Point sources in a diffraction 
gap

Unit 4

Do more
Diffracting with a 
single slit

AOS 2

Topic 1

Concept 1

Unit 4 Diffraction 
of light
Summary screen 
and practice 
questions

AOS 2

Topic 1

Concept 1

Diffraction patterns change 
with gap width. As the gap 
width gets smaller, coming 
down the figure, the pattern 
spreads out more.
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Divide the point sources in the gap into two groups, a and b. Pairing up 
the top point source of group a, a1, with the top point source of group b, b1,

shows there is a path difference of λ
2

. Therefore, waves from a1 and b1 will 

cancel in the direction of θ . Similarly, waves from a2 and b2 will cancel, and so 
on. So for the angle θ , waves from half of the point sources in the gap will cancel 
with waves from the other half. This means there will be a dark band, or as it 

is called a first minimum, at an angle that satisfies the relationship 
w

sin .θ λ=

This relationship provides an explanation for the observations of the diffrac-
tion of light:

A longer wavelength ⇒ the angle of the first minimum is greater ⇒ the 
pattern is wider.
A larger gap width ⇒ the angle of the first minimum is smaller ⇒ the pattern 
is narrower.

Diffraction and optical instruments
Diffraction limits the usefulness of any optical instrument, whether it be your 
eye, a microscope or a telescope. It even affects radio telescopes.

The pupil of your eye is the circle through which light enters the eye. The 
objective lens of a microscope or a telescope determines how much light the 
instrument captures. These all have a width, so a diffraction effect is unavoid-
able. Diffraction limits the instrument’s capacity to distinguish two objects that 
are very close to each other.

In the following images, light from two close sources passes an optical device 
and produces image (a), showing two distinct spots. When the two sources are 
moved closer together, image (b) is produced, and the spots begin to merge. 
Moving the two sources even closer together produces image (c); the two spots 
are now one broad spot. At the separation that produces image (b), the dif-
fraction patterns produced by the optical device begin to overlap so that the 
central maximum of one pattern sits on the minimum of the other. This separ-
ation is the limit of the device to resolve the detail in an image; it is called the 
diffraction limit or resolution of the device.

The diffraction limit of a device depends on the ratio w
λ . Thus, a shorter 

wavelength gives a better resolution, as does a larger aperture for the optical 
device.

resolved diffraction
limit

unresolved

The diffraction patterns of two point sources overlap as the sources move closer 
together.

Images produced by two 
point light sources as they get 
closer, from (a) to (c).

(a)

(b)

(c)
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Linking diffraction and interference
When light from a point source illuminates a double slit, each slit produces 
its own diffraction pattern with a wide central maximum and smaller side 
maxima. If the two slits are close together, these two patterns overlap, and the 
light coming from each slit interferes with the light coming from the other slit. 
This causes light and dark bands where the two central maxima overlap and 
also where the side maxima overlap.

Interference pattern from two slits that are not extremely narrow. The slits in the 
bottom diagram are narrower than those for the top diagram because the central 
maximum is wider.

Normally, to emphasis the key features of interference, the pattern is pre-
pared with slits that are so narrow that the central maximum fills the screen 
and the side maxima are not observed.

Light as an electromagnetic wave
Young had shown that the behaviour of 
light passing through narrow slits could 
be explained using ideas of waves. He 
had even measured the wavelengths of 
light in the visible spectrum, but he did 
not know what sort of wave light might 
be. James Clerk Maxwell (1831–1879) pro-
vided the answer in 1864. He began with 
the ideas of electric and magnetic inter-
actions that are discussed in chapters 5, 
6 and 7. From these ideas he developed 
a theory predicting that an oscillating 
electric charge would produce an oscil-
lating electric field, together with a mag-
netic field oscillating at right angles to the electric field. These inseparable fields 
would travel together through a vacuum like a wave and the speed of the wave 
would be the same, whether the oscillations were rapid (high frequency and a 
short wavelength) or very slow (low frequency and a long wavelength). Max-
well predicted their speed, using known electric and magnetic properties of a 
vacuum, to be 3 × 108  m  s−1. This is the speed of light! Maxwell had produced a 
theory that explained how light was produced and travelled through space as 

Unit 4 Electromagnetic 
waves
Concept summary 
and practice 
questions

AOS 1

Topic 2

Concept 1

An electromagnetic wave. The 
electric and magnetic fields 
are uniform in each plane, but 
vary along the direction of the 
motion of the wave.

v = c

E

B



UNIT 4 250

 electromagnetic waves. This applied not only to visible light, but also to other 
radiation that we cannot see, such as infra-red and ultraviolet radiation. Fur-
thermore, his electromagnetic model of light indicated that light could be 
described as transverse wave.

(nanometres)

Gamma
raysX-rays

Ultra-
violet
rays

Infra-
red
rays

Microwaves

Radar

Radio waves

AM FM

Power
and

telephone

electrical
generator

electronic tubes and
semi-conductor

devices

communication,
detection

microwave
ovens

heat
treatment

lighting,
germicides,
fluorescence

research,
medical

treatment
and

diagnosis

medical
treatment

klyston
tubes,

microwave
lasers

incandescent
lamps, heat

lamps

UV lamps,
fluorescent

tubes,
sparks,
lasers

X-ray
tubes,

synchro-
trons

cosmic
rays,

radioactive
isotopes

750 700 650 600 550 500 450 400

visible spectrum
(white light)

108 106 104 102 1 10−2 10−4 10−810−6 10−10 10−12 10−14

102 104 106 108 1010 1012 1014 1016 1018 1020 1022

Wavelength in metres

Frequency in hertz

Forms of radiation and their place in the electromagnetic spectrum. The visible 
portion of the spectrum is shown enlarged in the upper part of the diagram.

TABLE 10.3 Frequency and wavelength of colours

Red Orange Yellow Green Blue Violet

Frequency (× 1012 hertz) 430 480 520 570 650 730

Wavelength (nanometres) 700 625 580 525 460 410

Sample problem 10.6

When light with a frequency of 5.6 × 1014  Hz travels through a vacuum, what is its:
(a) period
(b) wavelength (in nanometres)?
The speed of light in a vacuum is 3.0 × 108  m  s−1.

(a) T
f
1

1
5.6   10
1.8   10 s

14

15

=

=
×

= × −

The period of the light is 1.8 × 10−15 seconds.

Solution:
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(b) λ =

= ×
×

= × −

f
c

3.0   10
5.6   10
5.4   10 m

8

14

7

The wavelength of visible light is usually expressed in nanometres (nm).

 1 nm = 1 × 10−9  m

 λ = 5.4 × 102  nm

The wavelength of the light is 540 nanometres.

Revision question 10.6

Find the frequency and period of light with a wavelength of 450  nm.

The frequency of a light ray is determined by the source (that is, what pro-
duces the light). The speed of the light is determined by the material the light 
is passing through. (The refractive index is a measure of how much the light is 
slowed down by the material.) This means that, when light passes from air into 
water, the frequency stays the same, the speed decreases and the wavelength 
must also decrease.

When you are under water and you look around, the objects you see still 
have the same colour. This means that your eye is responding to the frequency 
of the light ray and not to its wavelength. The world would be a strange place if 
the eye’s response was the other way round.

Maxwell’s theoretical wave model for light was able to show that the energy 
associated with electromagnetic waves was related to the size or amplitude of 
the wave. The more intense the wave, the greater the amplitude, and hence the 
energy it contained. He was also able to show that an electromagnetic wave 
had momentum and was thus capable in principle of exerting forces on other 
objects. According to Maxwell’s model the amount of momentum contained in 
an electromagnetic wave p is related to the energy contained in the wave, E, by 

the simple equation p = E
c

 or E = pc.

In Unit 1 you studied the electromagnetic radiation given off by hot 
objects, in particular, Wien’s Law and the Stefan–Boltzmann relationship. 
At that stage there was no explanation for those relationships or the shape 
of graph of intensity against wavelength. At about the same time as Maxwell 
was developing his theory of electromagnetism, Max Planck (1858–1947) was 
seeking an explanation for the shape of the intensity–wavelength graph. He 
could make his mathematical models fit the available data only if he con-
ceded that the energy associated with the electromagnetic radiation emitted 
was directly proportional to the frequency of radiation and that the energy 
came in bundles that he called quanta. Thus E = hf, where h is a constant 
and has come to be known as ‘Planck’s constant’. Planck’s constant is equal 
to 6.63 × 10 −34  J  s.

What all of this meant was not clear — Maxwell’s wave model for light 
worked extremely well and yet understanding incandescent objects required a 
model that concentrated energy into localised packets called quanta that were 
more like particles. It would be for Albert Einstein to interpret this apparent 
quandary with other experimental data over a decade later. For this discovery 
he would win the Nobel Prize for Physics in 1921.
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Sample problem 10.7

(a) Blue light has a frequency of 6.7 × 1014  Hz.
 (i) Calculate the energy associated with a bundle of blue light.
(ii) Find the momentum associated with a quantum of blue light.

(b) Find the momentum of a quantum of red light of wavelength 650  nm.

(a)   (i) The energy of the blue light E is given by:

E f

. .

.

h

6 63 10 6 7 10

4 4 10 J.

34 14

19

=
= × × ×
= ×

−

−

(ii) The momentum p is given by:

p
E

.

c
4.4 10

3 10

1 5 10 N s.

19

8

27

=

= ×
×

= ×

−

−

(b) From the wavelength we can find the frequency. From the frequency we 
can find the energy. From the energy we can find the momentum. We can 
combine these three steps into one.

f E f E
c

h
hc

λ λ
= ⇒ = ⇒ =

Now p
E
c

p p
hc

c
h

.
λ λ

= ⇒ = ⇒ =

p
h

6.63 10
6.5 10

1.00 10 N s

34

7

27

λ
=

= ×
×

= ×

−

−

−
   

p
h

6.63 10
6.5 10

1.00 10 N s

34

7

27

λ
=

= ×
×

= ×

−

−

−

Revision question 10.7

A quantum of light has a momentum of 9.8 × 10 −28  N  s. Calculate the frequency 
of the light.

Polarisation
The transverse wave model of electromagnetic radiation developed by James 
Maxwell in 1873 proposes that light and other electromagnetic waves travel 
in many planes. Two hundred years earlier, the wave model of Christiaan 
 Huygens proposed that light travelled as longitudinal waves — like sound.

The following figure shows what happens when a transverse wave in a ver-
tical plane passes through a vertical slit. A transverse wave in a horizontal plane 
is unable to pass through a vertical slit. If transverse waves in many planes were 
to approach the slit, only the waves in the vertical plane would pass through. 
This blocking of waves except for a single plane is called  polarisation. The next 
figure shows how a longitudinal wave can pass through both slits. Longitudinal 
waves cannot be polarised.

Solution:

Weblink
Polarisation

Polarisation is the blocking of 
transverse waves except for those 
travelling in a single plane.
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Waves in a vertical plane pass through the slit. The 
waves in a horizontal plane cannot pass through.

Longitudinal waves can pass through both vertical and 
horizontal slits.

Observations of the polarisation of light show that light is a transverse wave 
rather than a longitudinal wave, as longitudinal waves cannot be polarised. 
The polarisation of light is observed when it passes through some materials. 
These materials, which allow light waves in one plane to pass while blocking 
light in all other planes, are called polarising filters.

Light passed through crossed polarisers — polarising filters at right angles to 
each other

unpolarised light

vertical
polarising filter horizontal

polarising filter

no light

vertically
polarised light

 

A protractor seen through crossed polarisers

Unit 4 Polarisation
Concept summary 
and practice 
questions

AOS 1

Topic 2

Concept 2



UNIT 4 254

AS A MATTER OF FACT

Sunglasses with polarising lenses cut out the glare from reflective 
surfaces such as water and roads. Reflected light is polarised in the 
horizontal direction, so putting the plane of the polarising filter in the 
vertical cuts out glare.
Bees can see the polarisation pattern of the sky and use it to locate 
sources of pollen. In fact, many insects, fish, amphibians, arthropods 
and octopi use polarisation of light.
Stresses in transparent objects can be detected using polarisation. 
The object to be observed is placed between crossed polarisers. Light 
passes through the object towards a camera. Normally, no light would 
pass through the crossed polarisers. However, regions under stress can 
rotate the plane of polarisation. This allows some light to get through, 
creating a photographic image that reveals the stresses.

Weblink
Polarised light applet
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Chapter review
Unit 4 Light as a wave

Young’s double 
slit experiment

Sit Topic test

AOS 1

Topics 2 & 3

 ■ The amount of diffraction is related to the wave-
length of light and the size of the opening or 
obstacle. The greater the wavelength, the more evi-
dent the diffraction effects. The smaller the size of 
an opening or obstacle, the more evident the dif-
fraction effects.

 ■ Transverse waves, including light, can be polar-
ised. Polarisation is the blocking of transverse waves 
except for those in a single plane.

Questions
The data presented in table 10.1 may be used where 
relevant in the questions on the following pages.

Refraction
1.  What is the angle of refraction in water (n = 1.33) 

for an angle of incidence of 40°? If the angle of 
incidence is increased by 10°, by how much does 
the angle of refraction increase?

2.  A ray of light enters a plastic block at an angle of 
incidence of 55° with an angle of refraction of 33°. 
What is the refractive index of the plastic?

3.  A ray of light passes through a rectangular glass 
block with a refractive index of 1.55. The angle 
of incidence as the ray enters the block is 65°. 
 Calculate the angle of refraction at the first face 
of the block, then calculate the angle of refraction 
as the ray emerges on the other side of the block. 
Comment on your answers.

4.  Immiscible liquids are liquids that do not mix. 
Immiscible liquids will settle on top of each other, 
in the order of their density, with the densest liquid 
at the bottom. Some immiscible liquids are also 
transparent.
(a) Calculate the angles of refraction as a ray passes 

down through immiscible layers as shown in 
the figure below.

air

25°

acetone

glycerol
carbon

tetrachloride

glass beaker

light
ray

n = 1.00

n = 1.357

n = 1.4746
n = 1.4601

n = 1.53

Summary
 ■ Light bends as it travels from one medium to another. 

A measure of a medium’s capacity to bend light is 
given by its refractive index.

 ■ If light travels into a medium of a higher refractive 
index, the light is bent towards the normal. If light 
travels into a medium of a lower refractive index, the 
light is bent away from the normal. This change in 
direction is summarised in Snell’s Law. Snell’s Law 
can be expressed as n1 sin θ1 = n2 sin θ2.

 ■ When light travels into a medium of a lower refractive 
index, there will be an angle of incidence for which 
the angle of refraction is 90°. This angle of  incidence 
is called the critical angle. For angles of incidence 
greater than the critical angle, all the light is reflected 
back into the medium. This phenomenon is called 
total internal reflection.

 ■ Light consists of a mixture of colours, and when these 
colours enter a material they refract at different angles. 
This means that a material has a different refractive 
index for each colour. The resulting separation of light 
into different colours is called dispersion.

 ■ Light is a form of electromagnetic radiation that can 
be modelled as transverse waves with colours dif-
fering in frequency and wavelength.

 ■ The equation c = f  λ describes the speed of a wave in 
terms of its frequency, f, and wavelength, λ.

 ■ The speed of light in a uniform medium is a

 constant and is given by the equation v n
c= , where c 

 is the speed of light in a vacuum and n is the refrac-
tive index of the medium.

 ■ The behaviour of light, particularly refraction, diffrac-
tion and two-slit interference, is strong evidence for 
the wavelike properties of light.

 ■ The amount of diffraction is determined by the ratio 

 w
λ .

 ■ Interference patterns resulting from light passing 
through two narrow slits can be explained using the 
wave principles of constructive and destructive inter-
ference of waves that are in phase and out of phase 
respectively. This interference results from a path 
difference.

 ■ In an interference pattern, a region of intense light or 
maxima results from a path difference of 0, ±λ, ±2λ, 
±3λ, .  .  .

 ■ In an interference pattern, a region of no light or 
 minima results from a path difference of ± 1

2 λ, ± 3
2 λ, 

 ± 5
2  λ, .  .  .
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(b) If a plane mirror was placed at the bottom of 
the beaker, calculate the angles of refraction as 
the ray reflects back to the surface. Comment 
on your answers.

 5. A ray travelling through water (n = 1.33) 
approaches the surface at an angle of incidence 
of 55°. What will happen to the ray? Support your 
answer with calculations.

 6. (a)  To appear invisible you need to become 
transparent. What must your refractive index 
be if your movement is not to be detected?

(b) The retina of your eye is a light-absorbing 
screen. What does that imply about your own 
vision if you are to remain invisible? (Hint: If 
you are invisible all light passes through you.)

 7. Calculate the angle of deviation at a glass–air 
interface for an angle of incidence of 65° and 
refractive index of glass of 1.55.

 8. Calculate the sideways deflection as a ray of light 
goes through a parallel-sided plastic block (n = 1.4) 
with sides 5.0  cm apart, as in the figure below.

30°

n = 1.4 5 cm

 9. Calculate the angle of deviation as the light ray goes 
through the triangular prism shown in the figure 
below.

40°

60°n = 1.5

?

 10. A ray of light enters a glass sphere (n = 1.5), as in 
the figure below. What happens to the ray?

30°

glass sphere

centre of
circle

Total internal reflection
 11. Calculate the critical angle for light travelling 

through a diamond (n = 2.5) towards the surface.
 12. (a)  Calculate the refractive index of the glass 

prism shown in the figure below so that the 
light ray meets the faces at the critical angle. Is 
this value of the refractive index the minimum 
or maximum value for such a reflection?

(b)  Draw two parallel rays entering the block. 
How do they emerge?

45°

 13. Calculate the refractive index of the plastic 
coating on an optical fibre if the critical angle for 
glass to plastic is 82.0° and the refractive index of 
glass is 1.500.

 14. Describe what a diver would see when looking up 
at a still water surface.

 15. A right-angled glass prism (n = 1.55) is placed under 
water (n = 1.33), as shown in the figure below.

45°

air

water

  A ray of light enters the longest side along the 
normal. What happens to the ray of light?

 16. A fish looking up at the surface of the water sees a 
circle, inside which it sees the ‘air world’. Outside 
the circle it sees the reflection of the ‘water world’. 
If the fish is 40 cm below the surface, calculate the 
radius of the circle (nwater = 1.33).

 17. Light enters an optical fibre 1.0 µm in diameter, 
as shown in the following figure. Some light goes 
straight down the centre. Another ray is angled, 
leaving the central line and meeting the outside 
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edge at slightly more than the critical angle of 82° 
then reflects back to the central line.

82°

optical fibre

light rays

1 μm

(a) How much further did this ray travel?
(b) Calculate the speed of light in the glass and 

determine the time delay between the two 
rays after one internal reflection. Do you 
think this could be a problem in an optical 
fibre? If so, when? How could the problem be 
overcome?

Dispersion
 18. Give the meaning of the following terms: 

refraction, reflection, dispersion, spectrum, 
refractive index, chromatic aberration.

 19. (a)  White light enters a crown glass rectangular 
prism. Sketch the path of red and deep 
blue light through the glass and back into 
air. How does the direction of the emerging 
coloured rays compare with that of the 
incoming white ray?

(b) Suggest why a glass triangle is used to observe 
the visible spectrum, rather than a glass 
rectangle.

 20. Which travels faster through crown glass — red 
light or violet light? What is the speed difference?

 21. Green and violet light enter a triangular prism. 
Which is bent more?

 22. Draw red and violet light rays going through an 
inverted prism.

 23. Red, green and violet light emerge from a triangular 
prism and enter an inverted prism. Carefully trace 
the three paths through these prisms. What do you 
think you would see at the other end?

 24. Will a convex lens have a longer focal length for 
red or violet light? Explain, referring to how light 
bends at the front and back surfaces of the lens.

25. (a)  In what direction would you need to look to 
see a rainbow (i) early in the morning (ii) at 
midday?

  (b)  In what direction would a person in the 
Northern Hemisphere look to see a rainbow 
(i) early in the morning (ii) at midday?

 26. You look out of an aeroplane window and see a 
rainbow. Where would the Sun be? What would 
be the shape of the rainbow?

The wave model
 27. Calculate the period of orange light, which has a 

frequency of 4.8 × 1014  Hz.
 28. When blue light of frequency 6.5 × 1014  Hz travelling 

through the air meets a glass prism, its speed 
decreases from 3.0 × 108  m  s−1 to 2.0 × 108  m  s−1. 
Calculate the wavelength of the blue light in:
(a) the air    (b) the glass.

 29. A ray of white light passes from air into crown 
glass at an angle of incidence of 30°. Calculate 
the angles of refraction for red light (n = 1.4742) 
and blue light (n = 1.4810). Calculate the angle 
between the red and blue light rays.

 30. The refractive indices of diamond for red and blue 
light are 2.40 and 2.44, respectively. Calculate the 
critical angles for both red and blue light in diamond.

 31. Refer back to question 19(a). Both emerging 
coloured rays have been shifted sideways 
compared with the incoming ray.
(a) Calculate how much each colour has been 

shifted if the angle of incidence for the 
incoming ray is 45° and the thickness of the 
block is 5.0  cm.

(b) Which colour is shifted more and by how 
much more?

(c) Does this shift depend on the angle of 
incidence? Try some other values for the angle 
of incidence.

 32. The shape of a rainbow is circular. When would 
you see:
(a) a small arc only (b) a semicircle?

 33. Is a rainbow produced by total internal reflection 
or just reflection? It has been suggested that the 
light is totally internally reflected at the back 
surface of the raindrop, rather than undergoing 
partial reflection and partial transmission.

 34. A secondary rainbow is formed when the ray of 
light from the sun enters at the bottom of the 
raindrop, reflects twice then emerges from the top.
(a) Draw a large circle to represent the raindrop 

and draw the paths of the red and violet rays 
through the raindrop.

(b) What do you expect to be the order of the 
colours in the secondary rainbow? How else 
will the secondary rainbow differ?

 35. Explain, with the aid of a diagram, why 
polarisation would not be possible if light behaved 
like a longitudinal wave.

 36. A ray of white light enters a rectangular glass block 
at an angle of 45°. The block is 10  cm deep and has 
refractive indices for red and violet light of n = 1.514 
and n = 1.532, respectively. The refractive index is 
a measure of how much the light is slowed down 
(speed of light = 300  000  km  s−1).
(a) Calculate the speeds of the red and violet light 

in the glass block.
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(b) Calculate the angles of refraction for the red 
and violet light and the length of the path of 
each colour through the glass block.

(c) Which colour emerges from the glass first?
(d) Draw the paths of the red and violet light 

through the glass block. How do the two paths 
compare after they emerge from the block?

(e) Which ray ends up ahead?
 37. Newton shone a narrow beam of light from a 

small hole in a curtain onto a glass triangular 
prism. The visible spectrum of colours was 
produced in the emerging beam. He then placed 
a screen with a small hole in it in the path of the 
spectrum to allow only the red light through the 
hole onto another glass prism (see the figure 
below). The red light emerged from the second 
prism unchanged in any way. Why do you think 
Newton carried out this second stage of the 
experiment?

red
violet

Diffraction
 38. Consider the diffraction pattern produced when 

light passes through a narrow opening.
(a) Explain how the first minima in the pattern 

occur in terms of the interference of waves.
(b) Sketch the diffraction pattern produced by 

blue light and red light passing through the 
same narrow opening on the same axes.

(c) Repeat (b) but this time for light passing 
through an opening that is narrower.

 39. White light passed through a narrow slit and 
projected onto a distant screen shows bright and 
dark bands with coloured fringes.
(a) Explain how the coloured fringes arise.
(b) Red fringes are observed at the further extent 

from the central white maximum. Why?
 40. To the eye, the red light from a neon discharge 

tube appears very similar to the glow of a red-hot 
coal in a fire. A spectroscope shows that light 
emitted by the hot coal is a continuous spectrum, 
with the greatest intensity in the red part of the 
spectrum. However, neon does not emit light 
across the whole spectrum. Instead, many sharp 

lines of pure colour are seen in the red part of the 
spectrum. Explain why the neon spectrum is so 
different.

 41. List several different path differences that would 
produce constructive interference for infra-red 
radiation with a wavelength of 1.06  μm. Now 
list several path differences that would produce 
destructive interference.

 42. A student shines a helium–neon laser, which 
produces light with a wavelength of 633  nm, through 
two slits and produces a regular pattern of light 
and dark patches on a screen as shown below. The 
centre of the pattern is the band marked A. Using a 
wave model for light we can describe light as having 
crests and troughs.

C A B

(a) Use these terms to explain:
 (i)   the bright band labelled A in the diagram 

above
 (ii)  the dark band labelled B.
(b) What is the difference in the distance light has 

travelled from the two slits to:
 (i)  the bright band labelled A
 (ii)  the dark band labelled B
 (iii)  the bright band labelled C?
(c) Using the same experimental setup, but 

replacing the laser with a green argon ion 
laser emitting 515  nm light, what changes 
would occur to the interference pattern?

(d) The helium–neon laser is set up again. 
The distance between the two slits is now 
increased. What changes to the interference 
pattern shown in the diagram above would 
occur?

(e) The screen on which the interference pattern 
is projected is moved further away from the 
slits. What changes to the interference pattern 
shown in the diagram would occur?

 43. When we draw diagrams to illustrate the 
interference between light emerging through two 
narrow slits we usually draw straight, parallel 
wavefronts approaching the slits, but circular 
wavefronts leaving the slits. When is it appropriate, 
and when would it not be appropriate, to draw 
circular wavefronts leaving the slits?

 44. If you take a loop of wire, dip it in a soap solution and 
look at the soap film draining you will notice that 
there are coloured horizontal stripes across the film 
as seen in the photograph below. These stripes move 
down the film as it drains to the bottom of the loop. 
If the coloured stripes are caused by interference 
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between light reflected from the front and back of 
the film, explain why the stripes move.

 45. Red light (650  nm) and blue light (360  nm) is 
shone simultaneously through a diffraction grating 
where the slit width is 0.70  μm. The light falls 
onto a screen positioned 3.0  m from the grating. 
Explain why the diffraction pattern is coloured 
magenta in the middle of the pattern but gradually 
changes colour to red.

 46. Think about light at the two ends of the visible 
spectrum, violet and red.
(a) Which of these two colours will produce a 

broader pattern of light and dark bands when 
passed through a narrow slit, about 0.01  mm 
wide?

(b) Use your answer to (a), and your knowledge 
of the mixing of colours to explain why it is, 
when white light is shone through the same 
slit, the edges of the white central band appear 
to be yellow.

 47. Light of wavelength 430  nm falls on a double slit 
of separation 0.500  mm. What is the distance 
between the central bright band and the third 
bright band in the pattern on a screen 1.00  m from 
the double slit.

 48. A double slit is illuminated by light of two 
wavelengths, 600  nm and the other unknown. 
The two interference patterns overlap with the 
third dark band of the 600  nm pattern coinciding 
with the fourth bright band from the central 
band of the pattern for the light on unknown 
wavelength. What is the value of the unknown 
wavelength?

 49. When light enters a glass block, it is refracted, but 
some light is also reflected. For a particular angle 
of incidence, the angle between the reflected 
ray and the refracted ray is 90°. At this angle 
of incidence, called the Brewster angle, θB, the 
reflected ray is polarised. Show that tan θB = ng, 
where ng is the refractive index of glass.

incident ray
(unpolarised)

refracted ray
(slightly polarised)

reflected ray
(unpolarised)

θB

 50. Glare at the beach is partly caused by polarised 
light reflected from the sand and the water. 
The light is polarised in the horizontal plane 
of the two surfaces. What should be the 
orientation of polaroid sunglasses to block out 
the glare?



REMEMBER

Before beginning this chapter, you should 
be able to:

 ■ use the equation c = fλ for light
 ■ equate the work done, W = V q, with the 
change in kinetic energy, ∆Ek

 ■ apply simple wave and particle models to 
explain the behaviour of light.

KEY IDEAS

After completing this chapter, you should 
be able to:

 ■ interpret the photoelectric effect as 
evidence for the particle-like nature of 
light

 ■ describe why the wave model for light 
cannot account for the experimental 
results produced by the photoelectric 
effect

 ■ calculate the kinetic energy, Ek, of a 
charged particle, q, having passed 
through a voltage, V, as a measure of the 
work done, W : W = Vq = ∆E k

 ■ calculate the energy of a photon of light 
using the equation E = hf

 ■ explain how the intensity of incident 
radiation affects the emission of 
photoelectrons from an irradiated 
electrode

 ■ use the Einstein interpretation of the 
photoelectric effect and equation 
E f Whkmax = −

 ■ calculate the momentum of a photon of 
light using the equation λ=p h

 ■ use information sources to assess risk 
in the use of light sources, lasers and 
related equipment.

CHAPTER

11 The photoelectric effect

The work of Albert Einstein is central 
to our present-day understanding of 
the photoelectric effect.
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Physics before the observation of the 
photoelectric effect
By the latter half of the nineteenth century, the ability of Newtonian mech-
anics to predict and explain much of the material world was unquestioned. 
At the same time, discoveries in chemistry showed that the world consisted 
of many elements, each made up of identical atoms, and compounds made 
up of combinations of atoms in fixed proportion. Most scientists believed 
that all matter was made up of particles, and that the universe was governed 
by deterministic mechanical laws. That is, they thought the universe was like 
a big machine. Newtonian mechanics allowed them to explain the working 
of the universe in terms of energy transformations, momentum transfer, and 
the conservation of energy and momentum due to the action of well under-
stood forces.

The modelling of light was also progressing well, with many experiments 
indicating light was a wave of some type. James Clerk Maxwell developed a set 
of equations that were able to explain all the existing observations of light at 
the time based on the premise that light was an electromagnetic wave, making 
an assertion as to the nature of light itself. Light came to be modelled as a 
transverse wave consisting of perpendicular electric and magnetic fields.

 Thomas Young had shown that the behaviour of light passing through 
narrow slits could be explained using ideas of waves. He had even measured 
the wavelengths of light in the visible spectrum, but he did not know what sort 
of wave light might be. James Clerk Maxwell provided the answer in 1864. He 
began with the ideas of electric and magnetic interactions that you will have 
explored in electric power. From these ideas he developed a theory predicting 
that an oscillating electric charge would produce an oscillating electric field, 
together with a magnetic field oscillating at right angles to the electric field. 
These inseparable fields would travel together through a vacuum. Maxwell 
predicted their speed, using known electric and magnetic properties of a 
vacuum, to be 3 × 108  m  s−1. This is the speed of light! Maxwell had produced a 
theory that explained how light was produced and travelled through space as 
electromagnetic waves. This applied not only to visible light, but also to other 
radiation that we cannot see, such as infra-red and ultraviolet radiation.

Maxwell’s theoretical wave model for light was able to show that the energy 
associated with electromagnetic waves was related to the size or amplitude of 
the wave. The more intense the wave the greater the amplitude and hence the 
energy it contained. He was also able to show that an electromagnetic wave 
had momentum and was thus capable in principle of exerting forces on other 
objects. According to Maxwell’s model the amount of momentum contained in 
an electromagnetic wave p is related to the energy contained in the wave E by 

the simple equation p = E
c  or E = pc.

At the same time, Max Planck was trying to understand how hot objects 
emit electromagnetic waves. That is, he was studying light emitted by incan-
descent objects such as the sun, light bulbs or a wood fire. He could make 
his mathematical models fit the available data only if he conceded that the 
energy associated with the electromagnetic radiation emitted was directly 
proportional to the frequency of radiation and, importantly, that the energy 
came in bundles that he called quanta. Thus E = hf, where h is a constant and 
has come to be known as ‘Planck’s constant’. Planck’s constant is equal to 
6.63 × 10 −34  J  s.

What all of this meant was not clear — Maxwell’s wave model for light 
worked extremely well and yet understanding incandescent objects required a 
model that concentrated energy into localised packets called quanta that were 
more like particles.

v = c

E
E

B

B

An electromagnetic wave. The 
electric and magnetic fields 
are uniform in each plane, but 
vary along the direction of the 
motion of the wave.
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A pair of problems existed. One question was how matter could convert 
some of its kinetic and potential energy into light. Max Planck and other scien-
tists were working on this problem as part of their efforts to understand black 
body radiation (that is, radiation emitted by incandescent objects). The other 
question was how light could transfer its energy to matter. This process became 
known as the photoelectric effect. 

Planck’s conclusion about a particle nature for light did not fit comfortably 
with the successful wave model of light proposed by Maxwell. It would be for 
Albert Einstein to interpret this apparent quandary with other experimental 
data over a decade later. In reward for his success, he won the Nobel Prize for 
Physics in 1921. Einstein’s interpretation asserted that light is best thought of 
as a stream of particles, now called photons, with each photon carrying energy 
Ephoton = hf and capable of transferring this energy to other particles such as 
electrons.

Sample problem 11.1

(a) Blue light has a frequency of 6.7 × 1014  Hz.
  (i) Calculate the energy associated with a bundle of blue light.
(ii) Find the momentum associated with a quantum of blue light.

(b) Find the momentum of a quantum of red light of wavelength 650  nm.
(a)   (i) The energy of the blue light E is given by:

E f
. .
.

h
6 63 10 6 7 10
4 4 10 J.

34 14

19

=
= × × ×
= ×

−
−

 (ii) The momentum p is given by:

p
E

.

c
4.4 10

3 10
1 5 10 N s.

19

8

27

=

= ×
×

= ×

−

−

(b) From the wavelength we can find the frequency. From the frequency we 
can find the energy. From the energy we can find the momentum. We can 
combine these three steps into one.

f E f E
c

h
hc

λ λ
= ⇒ = ⇒ =

Now p
E

p pc
hc

c
h

.λ λ= ⇒ = ⇒ =

p
h

6.63 10
6.5 10

1.00 10 N s

34

7

27

λ
=

= ×
×

= ×

−

−

−

Revision question 11.1

A quantum of light has a momentum of 9.8 × 10 −28  N  s. Calculate the frequency 
of the light.

Solution:
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Sample problem 11.2

(a) What is the energy of each photon emitted by a source of green light having 
a wavelength of 515  nm?

(b) How many photons per second are emitted by a light source emitting a 
power of 0.3  W as 515  nm light? (This power is similar to the power emitted 
by a 40  W fluorescent tube in the wavelength range 515 ± 0.5  nm.)

(a) The photon energy can be found as follows:

E
hc

6.63 10 J s 2.9979 10 m s
515 10 m

3.86 10 J.

photon

34 8 1

9

19

λ
=

= × × ×
×

= ×

− −

−

−

(b) The power emitted by the globe is:

E
t

N E

t

power
energy emitted

time interval

photon

=

=
∆

=
∆

where
N is the number of photons emitted in the time interval ∆t.

So

N
t

E
power

0.3 W 1 s
3.86 10 J

8 10 s .

photon

19

17 1

= × ∆

= ×
×

= ×

−

−

Since each photon carries a tiny amount of energy, huge numbers of 
photons are emitted from quite ordinary light sources in each second.

Revision question 11.2

A radio station has a 1000  W transmitter and transmits electromagnetic radi-
ation with a frequency 104.6  MHz. Calculate the number of photons emitted per 
second by the transmitter.

A mysterious radiation
A mysterious sort of radiation discovered in 1895 was given a 
mysterious-sounding name: X-rays. Wilhelm Röntgen was studying the 
behaviour of cathode rays. These rays travel from the negative electrode, the 
cathode, to the positive electrode, the anode, of an evacuated tube. These 
rays could travel the length of the evacuated tube but could not penetrate the 
end of the tube. Röntgen had completely covered the cathode ray tube with 
black cardboard and turned the lights off so he could check that the covering 
was opaque. He was amazed to see a weak glow, just like fluorescent paint, 

Solution:

An X-ray is a form of 
electromagnetic radiation with a 
frequency above that of ultraviolet 
radiation.

A cathode ray is a stream of 
electrons emitted between a 
cathode (negative electrode) and 
an anode (positive electrode) in an 
evacuated tube.

Fluorescent describes the light 
emitted from materials as a result 
of exposure to external radiation.
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about a metre away from the tube. By the light of a match he identified a 
fluorescent screen as the source of the only glow. The glow could not have 
occurred spontaneously because fluorescent materials glow as a result of 
the energy received when absorbing other radiation. Röntgen realised there 
must have been other radiation striking the fluorescent materials, but the 
room was completely dark, there were no ultraviolet sources and cathode 
rays could not cross a metre of air. He reasoned that there must be another 
form of radiation, produced by the tube, which could pass through the glass 
tube, through air and cross the room. After using a magnet to deflect the 
cathode rays it became clear that the new rays were produced at the point 
where the cathode rays struck the end of the tube. He called the radiation 
X-rays to indicate that they were a new form of radiation whose properties 
were not known.

Röntgen measured the penetration of these new rays through various sub-
stances, including his own hand, and noted their lack of deflection by magnetic 
and electric fields, and the absence of observable interference effects with 
usual optical diffraction gratings.

The Coolidge tube, invented in 1913, became the standard method of producing 
X-rays. Electrons from a heated cathode are accelerated by high voltage towards 
the anode whose face is angled at 45° to the electron beam. Their collision with 
atoms in the anode, a high melting point material, produces X-rays. The anode 
must be cooled.

voltage
source

for heater

high voltage source

cathode anode
cooling fins

electrons

−  V  +
X-rays

The key question was: Are the X-rays particles or waves? Their straight paths 
through magnetic fields and electric fields eliminated the possibility of charged 
particles. Neutral particles or electromagnetic radiation were the remaining 
options, but the lack of observable interference seemed to rule out electro-
magnetic radiation.

X-radiation is electromagnetic radiation. Röntgen did not observe inter-
ference effects because of the diffraction grating he used. A grating is needed 
with ‘slits’ that are separated by a distance similar to the wavelength of X-rays, 
only 10−10  m. Confirmation of the wave behaviour of X-rays was finally pro-
duced by experiments in which the ‘slits’ were provided by the regular layers 
of atoms of crystals. These layers are commonly separated by 10−10 m, ideal 
to form a diffraction grating for X-rays. Max von Laue recommended, and his 
colleagues Friedrich and Knipping performed, the first demonstration of this 
wave behaviour when they directed a beam of X-rays through a thin crystal 
towards a photographic plate. After many hours of exposure the developed 
plate showed a delightfully symmetric pattern of bright spots on a dark 
background. These bright ‘Laue spots’ were evidence of constructive inter-
ference — X-rays were electromagnetic waves. This confirmation was not 
achieved until 1912.
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X-ray tube

hole in screen
to collimate
X-ray beam

(a)
crystal

screen coated
with photographic

emulsion

(a) Von Laue’s experiment, and (b) spots 
of high X-ray intensity result from 
constructive interference. This wave 
diffraction pattern is from a crystal of 
the enzyme RuBisCO.

(b)

Some preliminaries — measuring the energy of 
light and the energy of electrons
In order to appreciate the results of the photoelectric effect, it is necessary 
to be able to calculate both the energy associated with light and the energy 
associated with a moving particle such as an electron.

The energy associated with light, E, provided it is treated as a localised object 
as necessitated by Planck, can be equated to the product of the frequency and 
Planck’s constant: E = hf. The speed of light is related to the frequency and 
wavelength: c = f λ, in accordance with a wave model for light. For complete-
ness, since E = pc, the momentum associated with light, p, can be related to 
the wavelength λ  by the equation p h

λ= . It needs to be mentioned at this 

stage that both a wave model for light and a particle model for light have been 
used simultaneously. This usage of two models simultaneously came to be 
known as the wave–particle duality, and for many years it remained an unre-
solved component in physics. With the development of quantum mechanics 
in the 1920s, a consistent mathematical model incorporating both aspects 
emerged.

Potential differences can be used to accelerate and decelerate charged 
particles. Let us now review how the kinetic energy of a charged particle 
can be related to the electrical potential difference through which it can be 
made to move. Understanding this relationship will make understanding 
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the photoelectric effect easier. It will 
be also useful to know how the kin-
etic energy of matter is related to its 
momentum, just as in the case for 
light.

The simplest way to accelerate elec-
trons is with two parallel metal plates 
in an evacuated chamber (see the 
figure). The two plates are connected 
to a DC power supply (similar to a 
capacitor connected to a battery). An 
electron will experience an electric force anywhere in the region between the 
plates: it will be attracted by the positively charged plate and repelled by the 
negatively charged plate. Both of these forces act in the same direction.

The size of this force will also be the same throughout this region. At point A, 
the downward repulsive force on an electron from the negative plate will be 
greater than the downward attractive force of the positive plate. At point B, the 
downward attractive force will be greater. However, the combined effect of the 
two forces will be the same at each point.

This constant electric force on a charge placed between the plates can be 
compared to the constant gravitational force on a mass located above the 
ground. In gravitation, where the force acts on the mass of an object:

gravitational force = gravitational field strength × mass
W = mg

With an electric force, the force acts on the electric charge of an object:

electric force = electric field strength × electric charge
F = Eq

The electric field, E, can be expressed as electric force, F, divided by electric 
charge, q:

E F
q=

This equation is also applied to the magnitude of the electric field. That 
is, E F

q= . The unit of electric field is newtons per coulomb (N  C−1), in the 

same way that the gravitational field can be measured in newtons per kilogram 
(N  kg−1). However, the magnitude of the electric field can also be shown to be:

E
V
d

electric field
voltage across the plates

plate separation=

=

These two relationships for the electric field (E F
q=  and E V

d
= ) give it two 

equivalent units: newtons per coulomb (N C−1) and volts per metre (V  m−1).
These two relationships can also be linked by considering energy. The gain 
in energy of the electron can be obtained by calculating the work done on 
the charge to move it from one plate to the other. It can also be obtained by 
recalling that the voltage across a battery equals the energy gained by one 
coulomb of charge. So:

work = force × distance = voltage × electric charge
⇒ F × d = V × q

An electric field set up between two 
parallel plates connected to a battery

A

B

+

−

d
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The work done by the potential difference, V, on a free electron is equal to 
the change in the kinetic energy of the electron, ΔEk. Since kinetic energy is 
given by the expression mv1

2
2, and by further making the assumption that the 

initial kinetic energy of an electron emitted by a filament is zero, we then get a 
useful non-relativistic equation:

E Vq mv
1
2k

2= =

We interpret this equation in the following way. For a given voltage, V, acting 
on an electron (mass m = 9.1 × 10−31  kg and charge q = 1.6 × 10−19  C), we 
are able to calculate both the speed of the electron and hence its momentum 
(p = mv), as well as its energy, Ek.

Thus, an arrangement of negative and positive charged plates can be 
used to accelerate a charged particle in a straight line. This arrangement 
came to be known as an electron gun. By reversing the polarity of charge 
on the plates, electrons with energy can be decelerated. The voltage required 
to achieve this stopping of electrons with energy is known as a stopping 
voltage.

Measuring the energy of photoelectrons
In the photoelectric effect, energy is transferred from light to electrons. 
Lenard was able to measure the maximum kinetic energy of photoelec-
trons by applying a retarding voltage to stop them. Recall that the work 
done on a charge, q, passing through a potential difference, V, is equal 
to qV. That is, an electron passing through a potential difference of 3.0  V 
would have 1.6 × 10 −19 C × 3.0  J  C −1 = 4.8 × 10 −19  J of work done on it. 
If the voltage is arranged so that the emitted electrons leave the posi-
tive terminal and are collected at a negative terminal, then electrons lose 
4.8 × 10−19  J of energy. In the graph on page 12, the voltage, V, can be meas-
ured when the photocurrent drops to zero. This indicates that all the electrons 
which absorbed energy from light striking the electrode have been stopped.  
At this voltage — the so-called stopping voltage, V0 — the photoelectrons have 
had all their kinetic energy removed. Thus the kinetic energy that the photo-
electrons left the surface with, Ek, is qV0. In general, photoelectrons with a 
kinetic energy Ek, will be stopped by a stopping voltage V0 such that Ek = qV0.

The energy unit the joule is many orders of magnitude too large to be 
useful in describing energy changes in atoms. Instead we frequently use the 
electron volt, abbreviated to eV.

Sample problem 11.3

An electron gun uses a 500  V potential difference to accelerate electrons evap-
orated from a tungsten filament. Model the evaporated electrons as having 
zero kinetic energy.
(a) How much work is done on an electron moved across a potential differ-

ence of 500  V?
(b) What type of energy is this work transformed into?
(c) Calculate the kinetic energy of the electrons in electron volt and joule.
(d) Using the equation for the kinetic energy, Ek, of a particle with mass m, 

determine the speed, v, of these electrons.
(e) Calculate the momentum of these electrons.

(a) Use W = Vq = 500 × 1.6 × 10−19 = 8.0 × 10−17  J or 500  eV.
(b) Potential energy available is transformed into the kinetic energy of the 

electron: W = Vq = ∆Ek.

The electrons on the hot 
filament are attracted across 
to the positive plate and pass 
through the hole that is in line 
with the beam.

An electron gun is a device to 
provide free electrons for a linear 
accelerator. It usually consists of 
a hot wire filament with a current 
supplied by a low-voltage source.

An electron volt is the quantity of 
energy acquired by an elementary 
charge (qe = 1.6 × 10−19  C) passing 
through a potential difference of 
1  V. Thus, 1.6 × 10−19  J = 1  eV.
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(c) Assuming the initial kinetic energy of the electrons evaporated from a 
tungsten filament is 0, the kinetic energy of the electrons is equal to the 
work done: Ek = W = 8.0 × 10−17  J or 500  eV.

(d) E mv
1
2

8.0 10k
2 17= = × − J, provided the electron speed is sufficiently small 

 to ignore relativistic effects. Take the mass of an electron to be  
m = 9.1 × 10−31  kg and solve equation for v. Thus:

v
E
m

2 2 8.0 10
9.1 10

1.33 10 m sk
17

31
7 1= = × ×

×
= ×

−

−
−

 
This is substantially slower than the speed of light; therefore, we can ignore 
relativistic effects.

(e) p = mv = 9.1 × 10−31 × 1.33 × 107 = 1.2 × 10−23  N  s

Revision question 11.3

An electron in a beam of electrons generated by an electron gun has energy 
1.26 × 10−17  J.
(a) Calculate the energy of this electron in electron volts.
(b) State the potential difference required to stop electrons with this energy, 

that is to remove their kinetic energy and bring them to rest.
(c) Determine the speed of the electron, assuming that its kinetic energy is 

 given by the equation E mv
1
2k

2= .

(d) Use your answer to (c) to calculate the momentum of this electron.

Sample problem 11.4

(a) Electrons are emitted from a surface with a kinetic energy of 2.6 × 10 −19  J. 
What is the size of the stopping voltage that will remove all of this energy 
from the electrons?

(b) What energy electrons will a 4.2  V stopping voltage stop?
(a) The kinetic energy of each electron is 2.6 × 10 −19  J. The charge on an elec-

tron is 1.6 × 10 −19  C.

E qV

V

V

2.6 10 J 1.6 10 C

2.6 10 J
1.6 10 C

1.62 V

1.6 V (accurate to 2 significant figures)

k 0

19 19
0

0

19

19

=
× = × ×

= ×
×

=
=

− −

−

−

 A stopping voltage of 1.6  V will stop the electrons emitted from the  
surface.

(b) The stopping voltage is 4.2  V. The charge of an electron is 1.6 × 10 −19  C.

E qV
1.6 10 C 4.2 V
6.72 10 J
6.7 10 J (accurate to 2 significant figures)

k 0
19

19

19

=
= × ×
= ×
= ×

−

−

−

 A stopping voltage of 4.2  V will stop electrons with energy 6.7 × 10 −19  J.

Solution:
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Revision question 11.4

Electrons are emitted from the surface of a photocell with 4.8 × 10 −19  J of kinetic 
energy. What is the size of the stopping voltage that will remove all of this energy 
from the electrons?

Remember that a joule is the electric potential energy change that occurs 
when one coulomb of charge moves through a potential difference of one volt.

⇒

1 V
1 J
1 C

1 J 1 C 1 V

=

= ×
An electron volt is defined as the electric potential energy change that occurs 

when one electronic charge, qe = 1.6021 × 10−19  C, moves through one volt.

1  eV = 1 qe × 1  V

where
qe is the magnitude of charge of an electron
⇒ 1  eV = 1.6021 × 10 −19 C × 1  V
⇒ 1  eV = 1.6021 × 10 −19  J.

We now have some calculating tools for working with light, although it 
is modelled at this stage rather ambiguously as something like a particle — 

a localised packet with energy E = hf and momentum p E
c=  — but propagating 

like a wave with speed c = f λ, which further implies a momentum p h
λ=  for 

a localised packet. This localised packet, as we will see, is now known as a 
photon — a particle of light.

We also have some calculating tools for working with electrons, modelling

them as particles. These particles have kinetic energy E mv
1
2k

2=  and momentum

p = mv. We can also write the kinetic energy in terms of the momentum:

E
p
m2k

2
= . This equation, in particular, will prove to be useful later. With the 

right experimental apparatus we can either give or take energy from charged 
particles by allowing a potential difference V to do work W on a charge q 
according to the equation W = Vq. Electrons can thus be accelerated or 
decelerated by a potential difference depending solely on the polarity of the 
potential difference attached to the equipment. This equipment is generically 
referred to as an electron gun. We are now ready to learn about the photoelec-
tric effect and to interpret data arising from experiments.

The photoelectric effect
The nineteenth century view of light was developed as a result of the success of 
the wave model in explaining refraction, diffraction and interference. The wave 
model did a great job!

The first signs of behaviour that could not be explained using a wave model 
almost went unnoticed in 1887. Heinrich Hertz was in the middle of the experi-
mental work which would show that radio waves and light were really the same 
thing — electromagnetic waves. He produced radio waves with a frequency of about 
5 × 108 hertz (yes, the unit for frequency was named after him) by creating a spark 
across the approximately one centimetre gap between two small metal spheres. The 
radio waves were detected up to several hundred metres away, by the spark they 
excited across another air gap, this time between the pointed ends of a circular piece 
of wire. Hertz was able to show that the radio waves travelled at the speed of light. 
Although Hertz was not aware of it, this was the beginning of radio communication.

1 volt

qe energy change = 1 eV

1 C energy change = 1 CV
                         = 1 J

A joule and an electron volt
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Hertz detected radio waves using the spark between two electrodes.

to high
voltage source

oscillating spark

spark induced
by arriving
radio waves

up to several hundred metres

During his experiments Hertz noticed that the spark showing the arrival of 
the radio waves at the receiver became brighter whenever the gap was simul-
taneously exposed to ultraviolet radiation. He was puzzled, and made note of 
it, but did not follow it up. Now we know that the reason for the brighter spark 
was that the ultraviolet radiation ejected electrons from the metal points of the 
detector. The presence of these electrons reduced the electrical resistance of 
the air gap, so a spark flashed brighter than usual whenever the radio waves 
were being detected.

This ejection of electrons by light is called the photoelectric effect. Following 
up Hertz’s observations of this effect led to a breakthrough in the way we 
view the behaviour of light.

The experiment
Fifteen years passed before Philipp Lenard, a German physicist, performed 
careful experiments to investigate the effect. Lenard replaced Hertz’s spark 
gap with two metal electrodes on opposite sides of an evacuated chamber. 
He investigated the energies of electrons ejected from one of these electrodes 
when light shone on it. The experimental arrangement used in 1902 by Lenard 
is shown overleaf, top left. Lenard designed his experiment so that he could 
vary several features of this arrangement.

The frequency and intensity of the light could be varied. Light from an elec-
tric discharge arcing between two electrodes was introduced into the cham-
ber through a window. The arc produced a spectrum of several different 
frequencies characteristic of the electrode material. Filters in front of the 
window were used as frequency selectors to ensure that light of a single 
chosen frequency reached the electrode X. Light sources that emit light of 
only one frequency are called monochromatic light sources. Lenard varied 
the light intensity either by changing the arc current, or by moving the light 
source to a different distance from the window.
The potential difference between the electrodes in the chamber could be varied 
by changing the position of the slide contact on the coiled resistor. By vary-
ing the contact position to both right and left of Z, the potential difference 
could be made either accelerating or retarding for electrons.
Lenard could vary the distance between the electrode receiving light, X, and 
the second electrode, Y.
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First, Lenard used a fixed intensity light source and a fixed accelerating 
voltage while he varied the distance between the electrodes. He found that the 
current of photoelectrons, called the photocurrent, increased to a maximum 
when the electrodes were about 5 mm apart. He reasoned that after being 
ejected by light the electrons flew out in different directions, and that at this 
short distance the second electrode was collecting all electrons. This separ-
ation was used for all the later experiments.

Now he was ready to explore the effects of the light on this photoelectric 
effect. The results of Lenard’s further experiments are summarised in the 
graphs of photocurrent as a function of the potential difference between the 
electrodes for several light intensities shown below.

photocurrent
3I0

2I0

I0

2

3

1

− +0

stopping voltage, V0 voltage, V

retarding voltages accelerating voltages

The effect of changing light intensity from I0 without changing its frequency

The graphs above illustrate several important parts of Lenard’s investi-
gations. The numbers on the diagrams refer to the numbered points below.
1. Keeping the light frequency constant, Lenard investigated how the 

maximum photocurrent depended on light intensity. Higher intensity light 
produced greater values of the maximum photocurrent, as shown in the 
figure above. In fact Lenard’s results showed that the maximum photocur-
rent was directly proportional to the light intensity. To his surprise this pro-
portionality held true over a wide intensity range, right down to light of a 
tiny 3 × 10 −7 of the highest intensity light he could produce.

2. When Lenard applied a retarding voltage between the electrodes, the current 
decreased as the magnitude of the voltage increased. This was not surprising. 
It was expected that when the electric field between the plates exerted a force 
opposing the motion of the electrons, they would slow down and probably 
reverse direction before reaching the opposite electrode. The kinetic energy 
of the electrons would be converted into electric potential energy. Only the 
very slow electrons would reverse direction before being collected at the elec-
trode Y when the voltage between the plates was low. So, only a few electrons 
would then be removed from the stream contributing to the photocurrent. As 
the magnitude of the voltage was increased, more and more electrons would 
turn around before reaching the electrode, until at a particular voltage no elec-
trons completed the crossing and the current dropped to zero. This minimum 
voltage which causes all electrons to turn back is called the stopping voltage.

3. Lenard found that the stopping voltage did not depend on the intensity of 
the light being used. Brighter light did not increase the kinetic energy of 
the electrons emitted from the cathode. The same potential difference was 
required to convert all of the kinetic energy of the electron into electric 
potential energy, no matter how bright the light.

resistor G

filter light from arc
discharge

X Y

A
V

Z

Philipp Lenard’s experiment. 
Note that the point G is 
earthed, and this earths the 
electrode Y. Electrode X could 
be made either positive or 
negative relative to electrode Y.
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4. The stopping voltage, however, depended on both the frequency of the light 
(see the following figure) and on the material of the electrode. In fact, for each 
material there was a minimum frequency required for electrons to be ejected. 
Below this cut-off frequency no electrons were ever ejected, no matter how 
intense the light or how long the electrode was exposed to the light. Above 
this frequency a photocurrent could always be detected. The photocurrent 
could be detected as quickly as 10−9  s after turning on the light source. This 
time interval was independent of the brightness of the light source.

photocurrent

I0

4

− +0
stopping voltage, V0 voltage, V

retarding voltages accelerating voltages

The effect of changing light frequency, without changing its intensity, on the 
photocurrent of one material

These experiments provided evidence that the energy of light is bundled 
into packets whose energy depends on the light frequency. In explaining these 
experiments, the behaviour of light is best described as a stream of particles — 
very reminiscent of Newton’s view! Albert Einstein, in 1905, first proposed 
the model to explain the photoelectric effect. For this work he won the Nobel 
Prize in 1921, even though he is now better known for his theories of relativity, 
explaining the behaviour of objects travelling at speeds close to the speed of 
light. Lenard had already won the Nobel Prize in 1905 for his experimental 
investigations.

Sample problem 11.5

The diagram below shows the current- 
versus-stopping voltage curve for a typical 
photoelectric cell using green light.

The colour is changed to blue, but with 
a lower intensity. Sketch the curve that 
would result from these changes.

Because blue light has a higher frequency than green light, the stopping voltage 
would be greater. The lower intensity would make the photocurrent smaller. 
This is shown in the diagram below.

photocurrent

voltage (V )V0Vblue
0
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Revision question 11.5

Consider the same arrangement as in Sample problem 11.5 except this time 
yellow light is used but sufficient to cause the photoelectric effect to occur. The 
intensity of the light is greater than with the green light. Sketch the curve that 
would result from this change.

To help understand Einstein’s explanation of the photoelectric effect, 
it is helpful to have a mental picture of how the wave and particle models 
describe a light bulb and its intensity. We will then return to the photo-
electric effect.

The particle model view of a light bulb
The particle model describes a light bulb as an object emitting large 
numbers of light particles each second. These light particles are now 
called photons. The photons from a monochromatic light source all have 
the same energy, whereas a white light source emits photons having a 
range of energies. An intense monochromatic light source emits a greater 
number of photons per second than a dim light source emitting the same 
colour light.

Each photon has an energy that is characteristic of the frequency of the light. 
The relationship between photon energy, Ephoton, and frequency, f, is:

Ephoton = h f

where h is Planck’s constant, named after Max Planck who first 
proposed that light was emitted in fixed quantities of energy related to fre-
quency. The value of h is 6.63 × 10−34  J  s, or 4.15 × 10−15  eV. Since wave speed, 
frequency and wavelength are related by the equation c = f λ, we can also 
write:

E
hc

photon λ
=

where
c = the speed of light in a vacuum
λ = the wavelength of the light.

It is paradoxical that the photon energy, a particle characteristic of light, is 
related to wavelength, which arises from its wave behaviour.

(a)  dim light source (b)  more intense light source

represents a photon

(a) A dim and (b) a more intense light source. The reduced size of the art 
does not indicate that the photons here have been drawn as fuzzy blobs. 
A fuzzy blob has been used to indicate that a photon is not a particle like 
a billiard ball. It does not have definite edges.

A photon is a discrete bundle of 
electromagnetic radiation. Photons 
can be thought of as discrete 
packets of light energy with zero 
mass and zero electric charge.
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Sample problem 11.6

An electron is ejected from an atom with a kinetic energy of 1.9  eV. A retarding 
voltage of 1.2  V causes it to slow down during a photoelectric effect experiment 
(see figure below left). Describe the energy changes and calculate their values, 
in both eV and J.

Energy is transformed from kinetic energy to electric potential energy. Let qe 
represent the magnitude of the charge on the electron. The increase in electric 
potential energy is:

Δ Eep = −qeV
 = −qe × −1.2  V
 = 1.2  eV.

The electric potential energy has increased by 1.2  eV. The kinetic energy will 
have decreased from 1.9  eV to 0.7  eV.

Converting the unit of this increase of electric potential energy to joules:

1.2 eV = 1.2 eV × 1.6021 × 10−19  J  eV−1

 = 1.9 × 10−19  J.

In one step:

ΔE ep = −qeV
 = −1.6021 × 10−19  C × −1.2  V
 = 1.9 × 10−19  J.

Revision question 11.6

An electron is ejected from an atom with kinetic energy E. A retarding voltage of 
1.8  V causes it to slow down so that its kinetic energy is 0.50  eV.
(a) Calculate the initial kinetic energy E of the electron in eV.
(b) Convert this energy into joules.

Sample problem 11.7

The energy of a photon of 515  nm light is 3.86 × 10−19  J. How many eV is that?

To convert energy in J to eV, divide by 1.6021 × 10−19  J  eV−1.

3.86 10 J
3.86 10 J

1.6021 10 J eV

2.41 eV

19
18

19 1
× = ×

×
=

−
−

− −

Clearly the eV unit is much more convenient.

Revision question 11.7

What is the energy in joules of a photon whose energy is 13.6  eV?

A wave model view of a light bulb
Now we turn to thinking about a light bulb as a source of waves. The waves 
are moving oscillations of linked electric and magnetic fields, as shown in 
the figure on page 2. Spherical wavefronts spread out from the light bulb. If 
the light bulb is monochromatic, it emits light of a single frequency, and because 
all light travels at the same speed in a vacuum this frequency determines the 

Solution:

+1.2 V 0 V

(Plate is earthed.)

Solution:
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wavelength. The intensity of the light affects the amplitude of the wave, not its 
frequency. When more intense light passes a point there is a greater difference 
between the maximum and minimum values of the electric field, and the mag-
netic field, occurring at that point as the light passes.

dim light source more intense light source

AA

At the point A, the variation in the electric 
field with time is:

electric
field

time electric
field

time

Wave model of two light sources emitting light of the same frequency but with 
different intensities. Imagine a water surface being regularly disturbed by an 
object dipping into the water. The water level could represent the electric field of 
the light wave.

The particle model and the 
photoelectric effect
Now that we have an idea of the wave and particle model descriptions of inten-
sity, let’s consider how each of the observations of the photoelectric effect 
experiment could be explained using a particle model, and why a wave model 
is not as successful in this situation. Remember, a close inspection of the evi-
dence should be able to allow us to decide whether electrons are being hit by 
particles or waves.

The next figure illustrates the two models. In both models light transfers 
energy to the electrons, enabling them to escape from the overall attractive 
force exerted by the metal electrode. In the particle model description, the 
entire energy of a single photon is transferred to a single electron; the photon 
is gone. (One photon — two electron processes are very rare.) Some of the 
photon energy is required to enable the electron to escape from the elec-
trode. This transferred energy, which enables an electron to escape the attrac-
tion of a material, is called its ionisation energy. Electrons in the metal have 
a range of energy levels, so they also have a range of ionisation energies. The 
minimum ionisation energy is called the work function of the material. The 
photon energy which is ‘left over’ becomes the kinetic energy of the electron. 
Naturally, the electrons requiring the least energy to enable them to escape 
will leave with the greatest kinetic energy.

Ionisation energy is the amount of 
energy required to be transferred 
to an electron to enable it to escape 
from a material.

The work function is the minimum 
energy required to release an 
electron from the surface of a 
material.
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(a)

(b)

beam of photons

electrons on electrode surface

electrons on electrode surface photon energy allows
an electron to escape.

incoming waves

electrons 
on electrode
surface

electrons 
on electrode
surface

electron,
kinetic energy:  
hf – Eionisation

photon,
energy: hf

(a) A particle model and  
(b) a wave model of light 
intensity

The kinetic energy of each photoelectron is given by:

 Ek = Ephoton − Eionisation

 = hf − Eionisation

The maximum kinetic energy of photoelectrons, Ekmax, is given by:

E E W

f W

   

 h
kmax photon= −

= −

where W  is the work function.

An energy perspective
An energy picture of the effect can also be useful. Note that the vertical axis in 
the figure below is not the depth of the electron in the material, but the elec-
tron energy. Electrons in the metal have a range of energies, depending on 
how strongly they are bound to the metal. Electrons having higher energies are 
more loosely held by the material and need to receive less energy to escape 
than electrons at lower energy.

electron energy

escape

(a)

(b)

(d)

(c) Ek

EionisationW photon energy: hf

{
Four identical photons deliver 
their energy to four electrons. 
(a) Electron escapes, with 
maximum Ek = hf − W.  
(b) Photon energy is just 
enough for electron to escape, 
but electron Ek is zero.  
(c) Electron escapes, with  
Ek = hf − Eionisation;  
Ek < maximum Ek.  
(d) Photon energy is insufficient 
to enable electron to escape.
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Explaining Lenard’s experimental observations
Here is how the particle model explains Lenard’s experimental observations. 
The numbering here matches the number of these observations earlier in the 
chapter. (See pages 12–13.)
1. Maximum photocurrent is proportional to intensity.
 Doubling the intensity without changing frequency doubles the number 

of photons reaching the electrode each second, but not their energy. 
This doubles the rate of electron emission without changing the energy 
transferred to each electron, and therefore doubles the maximum 
photocurrent.

2. Retarding voltage reduces photocurrent. A stopping voltage exists above 
which no electrons reach the second electrode.

 Ejected electrons have a variety of energies, depending on the photon 
energy and their ionisation energy. A low retarding voltage turns back only 
the electrons having low kinetic energies. Increasing the retarding voltage 
will turn back electrons with higher kinetic energies, until at the stopping 
voltage none can reach the second electrode.

3. Stopping voltage is independent of light intensity.
 Changing the light intensity only does not change its frequency, so the 

photon energy is not changed. Photoelectrons will have the same range of 
energies, and so the same retarding voltage is needed to reduce the photo-
current to zero.

4. Stopping voltage depends on light frequency and material: a cut-off frequency 
exists.

  Since the stopping voltage reverses the direction of all electrons, it is the 
voltage required to entirely transform the kinetic energy of the fastest elec-
trons into electric potential energy.

Ekmax  = magnitude of change in electron’s electrical potential energy
 = qeV0

where qe here is the magnitude of the electronic charge.
 Our photon model tells us that:

E E W

f W

   

 h
kmax photon= −

= −
So qeV0 = hf − W.

Clearly V0 depends on the light frequency, f, and also on the electrode mat-
erial through its work function, W. A photon whose energy, hf, is less than the 
work function, W, cannot supply enough energy for an electron to escape. The 
electron remains trapped by the electrode.

Sample problem 11.8

Light with a wavelength of 425  nm strikes a clean metallic surface and photo-
electrons are emitted. A voltage of 1.25  V is required to stop the most energetic 
electrons emitted from the photocell.
(a) Calculate the frequency of a photon of light whose wavelength is  

425  nm.
(b) Calculate the energy in joules and also in electron volts of a photon of light 

whose wavelength is 425  nm.
(c) State the energy of the emitted electron in both electron volts and joules.
(d) Calculate the work function W of the metal in eV and J.
(e) Determine threshold frequency f0 and consequently the maximum wave-

length of a photon that will just free a surface electron from the metal.
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(f) Light of a wavelength 390  nm strikes the same metal surface. Calculate the 
stopping voltage.

(a) f
c

3.0 10
4.25 10

7.06 10 Hz

7.1 10 Hz

8

7

14

14

λ
=

= ×
×

= ×
= ×

−

(b) E fh

6.63 10 7.06 10

4.68 10 J

34 14

19

=
= × × ×
= ×

−

−

 To convert energy in joules into energy in electron volts, divide by  
1.6 × 10 −19 joules  eV −1.

E
4.68 10
1.6 10

2.92 eV

2.9 eV

19

19
= ×

×
=
=

−

−

(c) Since the stopping voltage is 1.25  V, the energy of the emitted electron is 
1.25  eV. The energy in joules can be found by multiplying by 1.6 × 10 −19. 
Thus the energy is:

1.25 × 1.6 × 10 −19 = 2.00 × 10 −19  J.

(d) Using the equation E kmax = hf − W, the work function can be found. We
 know that when the photon energy hf equals 2.92  eV the electrons have an 

energy of 1.25  eV. Thus 1.25 = 2.92 − W. Thus:

W = 2.92 − 1.25 = 1.67 eV = 2.67 × 10 −19  J = 2.7 × 10 −19  J.

(e) Again use the equation Ekmax = hf − W, The threshold frequency f0 is the
 frequency below which the photoelectric effect does not occur. At this fre-

quency electrons are just not able to leave the surface. This model implies 
0 = hf0 − W. Rearrange this equation to give the useful result:

f
W

.

.

.

h
2 67 10
6 63 10

4 03 10 Hz.

0

19

34

14

=

= ×
×

= ×

−

−

 The maximum wavelength is thus:

f
c

3.0 10
4.03 10

7.4 10 m or 740 nm.

0

8

14

–7

λ =

= ×
×

= ×

Solution:
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(f) Use the equation E h
c

kmax λ
=  − W to find the energy of the emitted elec-

 trons. When this is known the stopping voltage can be readily found. It is 
convenient to use eV here.

E  
4.15 10 3.0 10

3.90 10
   1.67

 3.19 1.67

 1.52 eV

 1.5 eV

kmax

15 8

7
= × × ×

×
−

= −
=
=

−

−

 A stopping voltage of 1.5 V is required to stop the emitted electrons.

Revision question 11.8

A new photocell with a different metallic surface is used. Again light of wave-
length 425  nm strikes a clean metallic surface and photoelectrons are emitted. 
This time, a stopping voltage of 0.87  V is required to stop the most energetic 
electrons emitted from the photocell.
(a) State the highest energy of the emitted electrons in both electron volts and 

joules.
(b) Calculate the work function W of the metal.
(c) Determine threshold frequency f0 and, consequently, the maximum wave-

length of a photon that will just free a surface electron from the metal.
(d) Light of a wavelength 650 nm strikes the same metal surface. Explain what 

happens.

Sample problem 11.9

The table below gives some data collected by students investigating the photo-
electric effect using a photocell with a lithium cathode. This cell is illustrated in 
the schematic diagram on the left.

Wavelength of 
light used (nm)

Frequency of 
light used  
× 1014 (Hz)

Photon energy 
of light used, 

Ephoton (eV)

Stopping 
voltage 

readings (V)

Maximum 
photo-electron 

energy Ee (J)

663 0.45

6.14 1.84 × 10−19

(a) Complete the table.
(b) Using only the two data points supplied in the table, plot a graph of 

maximum photo-electron energy in joules versus photon frequency in 
hertz for the lithium photocell.

(c) Using only your graph, state your values for the following quantities. In 
each case, state what aspect of the graph you have used.
 (i) Planck’s constant, h, in the units J  s and eV s as determined from the 

graph
  (ii) The threshold frequency, f0, for the metal surface in Hz as determined 

from the graph
(iii) The work function, W, for the metal surface as determined from the 

graph, in the units J  s and eV  s
(d) On the same axes, draw and label the graph you would expect to get when 

using a different photocell, given that it has a work function slightly larger 
than the one used to collect the data in the table above.

lithium surface

photocell

S

monochromatic
incident light

K

V

A
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A new photocell is now investigated. When light of frequency 9.12 × 1014  Hz is 
used, a stopping voltage of 1.70  V is required to stop the most energetic electrons. 
(e) Calculate the work function of the new photocell, giving your answer in 

both joules and electron volts.
(f ) When the battery voltage of the new photocell is set to 0  V, the photo-

current is measured to be 48  µA. The intensity of the light is now doubled. 
Describe what happens in the electric circuit with the power supply vol-
tage set to 0  V when the light intensity is doubled.

(g) With the intensity still doubled, the voltage is now slowly increased 
from 0 and the photocurrent slowly reduces to 0  A. State the stopping vol-
tage when the current first equals 0 A with the light intensity still doubled.

(a) Use c = f λ  to complete columns 1 and 2. Use E = hf to complete column 3, 
and use the conversion factor for joules to eV to complete columns 4 and 5.

Wavelength of 
light used (nm)

Frequency of 
light used  
× 1014 (Hz)

Photon energy 
of light used, 

Ephoton (eV)

Stopping 
voltage 

readings (V)

Maximum 
photo-electron 

energy Ee (J)
663 4.52 1.88 0.45 7.20 × 10−20

488 6.14 2.55 1.15 1.84 × 10−19

(b) The graph will contain two points representing the fact that light of fre-
quency 4.52 × 1014  Hz will produce electrons of energy 0.45  eV and light 
of frequency 6.52 × 1014  Hz will produce electrons of energy 1.15  eV. A line 
drawn containing these two data points will give a work function of 1.5  eV 
and a threshold frequency of 3.5 × 1014  Hz.

0

Ee (eV)

f (1014 Hz)3.5

−1.5

(c)   (i)   Planck’s constant = gradient of graph 

1.84 10 7.20 10
(6.14 4.52) 10

6.9 10
19 20

14
34= × − ×

− ×
= ×

− −
−   J  s,

       which is close to the accepted value. It also has the value  
4.3 × 10−15  eV  s.

   (ii)   From the line of best fit in graph (b), the threshold frequency = x-axis 
intercept = 3.5 × 1014  Hz.

 (iii)   From the line of best fit in the graph (b), the work function = y-axis 
intercept = 2.4 × 10−19  J = 1.5  eV.

(d) graph of photocell
with larger work
function

0

Ee (eV)

f (1014 Hz)3.5

−1.5

Solution:
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(e) Use Ee = Ephoton − W to calculate the work function, W.
 1.7 × 1.6 × 10−19 = 6.6 × 10−34 × 9.12 × 1014 − W
 W = 6.02 × 10−19 − 2.72 × 10−19

 = 3.3 × 10−19  J
 = 2.1  eV
(f) With the light intensity doubled, the photocurrent would also double.
(g) The stopping voltage would remain the same, 1.7  V, as the colour and 

hence the frequency of the light source is unchanged.

Revision question 11.9

The table below gives some data collected by students investigating the photo-
electric effect using a photocell with a clean metallic cathode.

Wavelength of 
light used (nm)

Frequency of 
light used  
× 1014 (Hz)

Photon energy 
of light used, 

Ephoton (eV)

Stopping 
voltage 

readings (V)

Maximum 
photo-electron 

energy Ee (J)

3.19 3.78 × 10−19

524 1.54

(a) Complete the table.
(b) Using only the two data points supplied in the table, plot a graph of 

maximum photo-electron energy in joules versus photon frequency in hertz 
for the photocell.

(c) Using only your graph, state your values for the following quantities. In each 
case, state what aspect of the graph you have used.
   (i) Planck’s constant, h, in the units J s and eV s as determined from the 

graph
  (ii) The threshold frequency, f0, for the metal surface in Hz as determined 

from the graph
(iii) The work function, W, for the metal surface as determined from the 

graph, in the units J  s and eV  s
(d) On the same axes, draw and label the graph you would expect to get when 

using a different photocell, given that it has a work function slightly larger 
than the one used to collect the data in the table above.

 A new photocell is now investigated. When light of frequency 8.25  ×  1014  Hz 
is used, a stopping voltage of 1.59  V is required to stop the most energetic elec-
trons. In addition, when the battery voltage is set to 0  V, the photocurrent is 
measured to be 38  µA.
(e) Calculate the work function of the new photocell.
(f) Describe what happens in the electric circuit with the power supply voltage 

set to 0  V when the light intensity is halved.
(g) With the intensity still halved, the stopping voltage is now slowly increased 

from 0  V and the photocurrent slowly reduces to 0  A. State the stopping 
voltage when the current first equals 0  A with the light intensity still halved.

What’s wrong with the wave model?
In the wave model picture of the photoelectric effect, the energy of light is 
shared between electrons and accumulated little by little with the arrival of 
each wavefront. If this were true, the photoelectric effect experiment results 
would be significantly different.

Higher intensity light, delivering energy at a greater rate, would produce 
electrons with higher kinetic energies, so the stopping potential difference 
would depend on intensity.

Unit 4 Failure of the 
wave model
Summary screen 
and practice 
questions

AOS 2

Topic 1

Concept 6



UNIT 4282

For example, the effect of waves on a beach is cumulative. As each wave 
breaks along the length of the beach, it adds to the effect of the previous waves 
until signs of erosion appear.

There would be a time delay while enough shared energy accumulated for 
electrons to escape, and this delay would be shorter for higher intensity light.

There would be no lower limit on the frequency of light which could eject 
electrons. The waiting time for electrons to emerge would be longer using lower 
frequency light, since its wavefronts arrive less frequently; however, eventually 
a current would be detected.

Great photoelectric effect results
Einstein’s insights into using a particle model to explain the photoelectric 
effect led to his 1905 prediction. He predicted that a graph of stopping voltage 
versus frequency would be a straight line whose gradient was independent of 
the material emitting electrons.

V f W
1

q
(h )0

e
= −

A ‘machine shop in a glass tube’ was needed to show that this prediction 
was correct. Robert Millikan, the same Millikan who had earlier measured 
the minimum value of electric charge, was the engineer of this machine shop, 
which is shown below. Strong monochromatic UV sources did not exist, so 
Millikan used the visible and near-UV lines of a mercury arc lamp. Since the 
visible and near-UV photons of the lamp have lower energy than UV photons, 
his studies were limited to materials with low work functions. He used the 
alkali metals: lithium, sodium and potassium.

(a) Millikan’s ‘machine shop in a glass tube’, and (b) his first published results

(a) (b)

Unfortunately, while a low work function makes their electrons accessible 
to visible light, it also made these materials vulnerable to reaction with the 
oxygen in air. The metals quickly become coated with a thin insulating layer of 
metal oxide. To overcome this problem, Millikan conducted his experiments 
in an evacuated glass container. Inside the container he placed an ingenious 
mechanism for rotating his electrodes past a sharp knife that scraped a clean 
metal surface for each experiment.

Part (a) of the above figure shows his experimental arrangement and part 

(b), his first published results. The gradient of the straight line is h
qe

, where h

is Planck’s constant and qe is the magnitude of the electronic charge. Millikan 
determined h

qe
 to be 4.1 × 10 −15  J  s  C−1.

Weblink
Explaining the photoelectric effect
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The graphs for different materials all have the same slope, 
h

qe
, but are 

displaced to the right or left, depending on the work function. The cut-off 
frequency, f0, is where the line meets the frequency axis. Its value is equal 

to W
h

.

V0 versus f for three different metals
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cut-off frequency depends on W
hf0 = W

hf − W
f0

Einstein said:

It seems to me that the observations associated with .  .  . the photoelectric effect, and 
other related phenomena .  .  . are more readily understood if one assumes that the 
energy of light is discontinuously distributed through space .  .  . the energy of a light 
ray spreading out from a point is not continuously spread out over an increasing 
space, but consists of a finite number of energy quanta which are localised at 
points in space, which move without dividing, and which can only be produced 
and absorbed as complete units.

The word quanta is plural for quantum, a word meaning a small 
quantity of a fixed amount. These energy quanta of light are what we now 
call photons.

This need for a photon model to explain the workings of the 
photoelectric effect fitted very neatly with Planck’s black body radiation 
model, in which a particle model for light was required to make the theory 
fit with the experimental evidence of light radiated from hot objects. How-
ever, both these phenomena contradicted the enormously successful wave 
model for light summarised by Maxwell’s four equations for electro magnetic 
phenomena. The wave model for light in terms of perpendicular electric 
and magnetic fields is consistent with observed interference patterns and 
diffraction patterns, and with the propagation of light at a single speed 
universal speed, c. A wave model for light is also consistent with a large 
range of electrical and magnetic phenomena, for example electromagnetic 
induction. 

Another chapter in physics was about to begin. The development of 
quantum mechanics would completely change the way in which scien-
tists viewed the universe. The Newtonian mechanistic world was about to 
be overthrown. Confusion between particle and wave models for both light 
and matter would be resolved, but this would take another thirty years to 
achieve.

eModelling
Photoelectric effect
doc-0042

A quantum is a small quantity of a 
fixed amount.
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PHYSICS IN FOCUS

Solar cells
Telephone installations in remote locations extract energy from the Sun using technology based on the transfer 
of photon energy to electrons. They use solar cells to convert solar energy to electric energy. This is achieved by 
photons transferring their energy to electrons so that they are able to conduct electricity.

Solar cells are made using semiconductors like silicon. In semiconductors only about 1 in 106 of the elec-
trons have sufficient energy to be conduction electrons. In metals like silver this figure is about 1 in 30.

Conduction electrons are not bonded to any particular atom in the crystal. They can travel through the 
material when a potential difference is applied across it, producing an electric current.

The vital part of a solar cell is a sandwich of two different types of impure semiconductor material, called 
n-type and p-type. The sandwich slivers are only tens of microns thick. Electrons drift from the n-type mat-
erial, containing electrons that are not attached to any particular atom, to the p-type material, where there 
are spaces for electrons in the bonding structure. This creates an electric field in the layer of material very 
close to the boundary between the two types, with the electrons in stable positions in the bonding structure 
of the semiconductor material.

When the electric circuit containing this cell is in the dark, the electric field has no effect; but in the sun-
shine photons stream into the cell.

to external 
circuit

(b)

++++++++++++++++++++++
– – – – – – – – – – – – – – – – – – – – – – – –
n-type

p-type

electric field
near boundary

Electrons excited by photons
in a region where there is an
electric field may contribute
to electric current.

}

stream of photons 
from the Sun

(a)

(a) Photoelectric cells, and (b) the structure of a photovoltaic cell

 
If a photon has sufficient energy, then it can knock an electron 

out of its niche in the material, enabling it to become a conduction 
electron and leaving a hole behind in the bonding structure. If this 
occurs within the region where there is an electric field, the electric 
force sweeps the electron through the cell, and through the circuit, 
contributing to the electric current.

The efficiency of a solar cell is limited by many factors. If its surface is 
too shiny, photons are reflected, so the surfaces are usually roughened. 
The sun’s spectrum itself limits how well the cell can make use of the 
photons. In silicon, a transfer of 1.1  eV is needed to transform a bound 
electron into a conduction electron. This corresponds to a wavelength 
of 1.1 × 10−6  m, just into the infra-red part of the spectrum. Photons 
having energy less than 1.1  eV pass straight through a simple silicon cell 
because their energy is too small to convert bound electrons into con-
duction electrons.

Only some of the photons of 
sunlight are of use to a silicon 
solar cell.

In
te

ns
ity

photon energy
too low

Solar cells convert energy
of photons of this radiation
into electrical energy.

0 1 2 3 4 5 6
λ (10−6 m)
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A photon model for the  
photoelectric effect
Almost thirty years after the first observation of the photoelectric effect, experi-
mental measurements confirmed the need for a photon model for light. The 
wave model for light was incapable of explaining the observations of the 
photoelectric effect.

TABLE 11.1 Timeline of key discoveries about the photoelectric effect

Date Event

1887 It all started with Hertz carefully noting the unusual behaviour of sparks 
across the gaps in his radio wave detector circuit. This was the first 
observation of the photoelectric effect.

1901 Max Planck solves the black-body radiation problem theoretically, paving 
the way for light to be modelled not only as a wave but also as a localised 
particle with energy proportional to the frequency of the light, f.

1902 Philipp Lenard carried out experiments to accumulate knowledge about 
the behaviour of electrons emitted by light. There were several puzzling 
aspects to his results — electron energies did not depend on the light 
intensity and there was a unique cut-off frequency for each material.

1905 The flash of insight was Albert Einstein’s, when he realised that all of 
Lenard’s observations could be explained if he changed the way he 
thought about light — if light energy travelled as particles not waves. 
He used the particle model to predict that the graph of stopping voltage 
versus frequency would be straight, with a slope that was the same for 
all electron emitters.

1915 Robert Millikan sealed the success of Einstein’s theory with plots of 
V0 versus f for the alkali metals that were straight and parallel to one 
another. He used the plots to measure Planck’s constant. The photon 
energy was hf.

TABLE 11.2 Observations made from the photoelectric effect and model predictions

Observation Wave model prediction Photon model prediction

For a given frequency of light, the 
photocurrent is dependent in a linear 
fashion on the brightness or intensity 
of light.

The wave model makes no significant 
predication other than that brighter 
light should produce electrons with 
greater energy, which is not the case.

Intensity of light relates to the number 
of photons per second striking the 
photocell. We would expect the 
photocurrent to be dependent on the 
intensity of light.

The energy of photoelectrons is 
independent of intensity of light and 
only linearly dependent on frequency.

The energy of electrons is dependent 
on the intensity of light: the bigger the 
amplitude of the wave, the larger the 
energy transferred to electrons.

The energy of photoelectrons is linearly 
dependent on the frequency of light, 
provided we interpret the energy of a 
single photon of light as equal to hf.

There is no significant time delay 
between incident light striking a 
photocell and subsequent emission 
of electrons, and this observation is 
independent of intensity.

Time delay to be shorter with 
increasing intensity

No time delay expected as individual 
photons of light strike photocell and 
transfer energy to individual electrons

There exists a threshold frequency 
below which the photoelectric effect 
does not occur, and this threshold is 
independent of intensity.

No threshold effect should exist, as 
energy transfer to electrons from light 
source is accumulative and eventually 
emission will occur.

A threshold frequency is predicted, 
as photons with energy less than the 
work function are incapable of freeing 
electrons from the photocell.

Unit 4 Photon model 
of light
Summary screen 
and practice 
questions

AOS 2
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Chapter review
Unit 4 Behaviour of light

Sit Topic test

AOS 2

Topic 1

Summary
 ■ The equation c = f  λ describes the speed of a wave in 

terms of its frequency, f, and wavelength, λ.
 ■ The photoelectric effect is the emission of electrons 

from materials, usually metals, by the action of light.
 ■ The photoelectric effect is best explained by con-

sidering light as consisting of a stream of particles 
called photons. Each photon has an energy, E, that 
is dependent on only the frequency of the light, f, 
according to the equation E = hf. This is the Einstein 
interpretation of the photoelectric effect.

 ■ The electron volt is a unit of energy.

1 eV = 1.6 × 10−19  J

 ■ When a photon hits an electron in a metal, it will 
transfer either all or none of its energy to an electron. 
This occurs within a time interval of typically 10 −9  s 
of a beam of light striking a surface.

 ■ Below a threshold frequency f0, the emission of elec-
trons does not occur regardless of the intensity of light.

 ■ The maximum kinetic energy of emitted electrons,  
Ekmax, is given by the equation Ekmax = hf − W, where 
f is the frequency of the light and W is the work func-
tion of the material.

 ■ The maximum kinetic energy of the electrons emitted 
because of the photoelectric effect can be deter-
mined by measuring the stopping voltage, V0.

E qVkmax 0=

 ■ The intensity of light has no effect on the stopping 
voltage but only effects in direct proportion the size 
of the photocurrent. A wave model for light cannot 
account for this, but a particle model of light can.

 ■ A graph of the maximum kinetic energy of emitted 
electrons plotted against frequency gives a straight 
line. The gradient of the graph is Planck’s con-
stant, h. The y-intercept is the work function, W, and 
the x-intercept is the threshold frequency, f0.

 ■ The photoelectric effect is strong evidence for light 
consisting of a stream of particles.

 ■ Photons have momentum, p, given by the equation

p = h
λ

, where λ is the wavelength of the photon.

Questions
Electromagnetic radiation
 1. The light from a red light-emitting diode (LED) has 

a frequency of 4.59 × 1014  Hz.
(a) What is the wavelength of this light?
(b) What is the period of this light?

 2. We can detect light when our eye receives as little as  
2 × 10 −17  J. How many photons of green light is this?

 3. Fill in the gaps in table 11.3 with the missing 
wavelength, frequency, photon energy and photon 
momentum values for the five different sources of 
electromagnetic radiation.

 4. A red laser emitting 600  nm light and a blue 
laser emitting 450  nm light emit the same power. 
Compare their rate of emitting photons.

The photoelectric effect
 5. The diagram below shows a cathode, several electrons 

that have been ejected from the cathode by light, and an 
anode. The electrons leaving the cathode surface have 
been labelled with their kinetic energy and their initial 
velocity vector. The anode is 5  mm from the cathode.

anode

cathode

5 mm

0.8 eV 0.8 eV 45° 0.2 eV 1.6 eV

(a) What is the speed of the electrons which have 
a kinetic energy of 0.8  eV?

 Copy the diagram and sketch the path you would 
expect each electron to take for each of the potential 
differences, V, in parts (b) to (d) on the next page.

TABLE 11.3 Characteristics of various light sources

Source Wavelength Frequency Energy Momentum

(a) Infra-red from CO2 laser 10.6  μm

(b) Red helium–neon laser 1.96  eV

(c) Yellow sodium lamp 1.125 × 10 −27  kg  m  s −1

(d) UV from eximer laser 1.55 × 1015  Hz

(e) X-rays from aluminium 2.01 × 10−16  J
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(b) V = 1.8  V, with the anode positive relative to the 
cathode

(c) V = 1.8  V, with the anode negative relative to 
the cathode

(d) V = 0.8  V, with the anode negative relative to 
the cathode.

 6. What is the stopping voltage when UV radiation 
having a wavelength of 200  nm is shone onto a 
clean gold surface? The work function of gold is  
5.1  eV.

 7. In the following diagram, the curve shows how 
the current measured in a photoelectric effect 
experiment depends on the potential difference 
between the anode and cathode.

photocurrent

voltage (V)

+−

(a) Explain the curve. Why does it reach a constant 
maximum value at a certain positive voltage, 
and why does it drop to zero at a certain 
negative voltage?

(b) If the intensity of the light was increased 
without changing its frequency, sketch the 
curve that would be obtained. Explain your 
reasoning.

(c) If the frequency of the light was increased 
without changing its intensity, sketch the 
curve that would be obtained. Explain your 
reasoning.

(d) If the material of the cathode was changed, but 
the light was not changed in any way, sketch 
the curve that would be obtained. Explain your 
reasoning.

 8. The curve below shows the current in a 
photoelectric cell versus the potential difference 
between the anode and the cathode when blue light 
is shone onto the anode.

1.0

0−1.7

I (μA)

1.0 2.0 V (V)

0.85

(a) State the current when the voltage is 0  V.
(b) State the current when the voltage is +1.0  V.
(c) State the current when the voltage is increased 

to +2.0  V.
(d) Why does increasing the voltage have no effect 

on the current in the circuit?
(e) The polarity is now reversed and the voltage 

increased until the current drops to 0  A. State 
the stopping voltage and hence the maximum 
energy of electrons emitted from the anode.

(f) The light source is now made brighter without 
changing the frequency. Copy the figure and 
sketch a second curve that illustrates the effect 
of increasing the intensity of the blue light.

(g) The light source is now returned to its original 
brightness and green light is used. A current is 
still detected. Sketch a third curve to illustrate 
the effect of using light of a lower frequency.

(h) The apparatus is altered so that the anode 
consists of a metal with a smaller work 
function. Again blue light is used. Sketch a 
fourth curve to illustrate the effect of changing 
the anode without changing either the 
brightness or colour of the light.

 9. The work function for a particular metal is 3.8  eV. 
When monochromatic light is shone onto the 
photocell, electrons with energy 0.67  eV are 
emitted.
(a) What is the stopping voltage required to stop 

these electrons?
(b) What is the frequency of the monochromatic 

light used?
(c) What is the threshold frequency of the 

metallic surface?
 10. In a photoelectric effect experiment, the threshold 

frequency is measured to be 6.2 × 1014  Hz.
(a) Calculate the work function of the metal 

surface used.
(b) If electrons of maximum kinetic energy 

3.4 × 10−19  J are detected when light of 
a particular frequency is shone onto the 
apparatus, what is the stopping voltage?

(c) With the same source of light, what is the 
wavelength and hence the momentum of the 
photons?
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 11. When light of frequency 5.3 × 1014  Hz is shone onto 
a metal surface, electrons with a maximum kinetic 
energy of 1.7  eV are emitted. A second photocell is 
now positioned and this time, using the same light, 
electrons of energy 1.3  eV are emitted. Calculate 
the difference between the work functions of the 
two photocells. Which cell has the greater work 
function: the first or the second?

 12. One electron ejected from a clean zinc plate by 
ultraviolet light has a kinetic energy of 4.0 × 10 −19  J.
(a) What would be the kinetic energy of this 

electron when it reached the anode, if a 
retarding voltage of 1.0  V was applied between 
the anode and cathode?

(b) What is the minimum retarding voltage that 
would prevent this electron reaching the anode?

(c) All electrons ejected from the zinc plate are 
prevented from reaching the anode by a 
retarding voltage of 4.3  V. What is the maximum 
kinetic energy of electrons ejected from the zinc?

(d) Sketch a graph of photocurrent versus voltage 
for this metal surface. Use an arbitrary 
photocurrent scale.

 13. The diagram below shows the energies of 
electrons in a block of copper. Zero energy is 
defined to be that for a stationary, free electron.

energy
(eV)

0

−4.5

escape
energy

(a) What is the work function of copper?
(b) A stream of light whose photons have an 

energy of 5.9  eV shines on the copper surface. 
Describe the possible outcome for electrons in 
the copper having energies of:

 (i) −4.7  eV
 (ii) −5.3  eV
 (iii) −5.9  eV
 (iv) −6.3  eV.

 14. Robert Millikan performed his photoelectric 
experiment using a clean potassium surface, with 
a work function of 2.30  eV. He used a mercury 
discharge lamp. One wavelength of radiation 
emitted by the lamp was 254  nm, in the ultraviolet.
(a) What is the maximum kinetic energy of 

electrons ejected from the potassium surface 
by this UV radiation?

(b) What voltage would be required to reduce the 
photocurrent in the cell to zero?

(c) Sketch a graph of maximum electron kinetic 
energy versus frequency for potassium. Show 
the point on the graph obtained from the 
254  nm UV radiation.

(d) Repeat this sketch for sodium, which has a 
work function of 2.75  eV.

 15. When the surface of a material in a photoelectric 
effect experiment is illuminated with light from 
a mercury discharge lamp, the stopping voltages 
given in the table are measured.

Wavelength (nm) Stopping voltage (V)

366 1.48

405 1.15

436 0.93

492 0.62

546 0.36

579 0.24

   Plot the stopping voltage versus the frequency 
of the light and use the graph to determine:
(a) the threshold frequency
(b) the threshold wavelength
(c) the work function of the material, in eV
(d) the value of Planck’s constant.

 16. Give four reasons why a particle model for light 
better explains the observations made for the 
photoelectric effect. In particular, explain why a 
wave model is inadequate for each reason.



12 Matter — particles and 
waves

CHAPTER

Until the nineteenth century, most scientists thought 
that light was a type of wave, but later evidence pointed 
towards light behaving more like a stream of particles. 
In the twentieth century, physicists realised that neither 
description was sufficient for light. In this chapter we 
see that the same discovery was also made about the 
electron.

REMEMBER

Before beginning this chapter, you should be able to:
 ■ calculate the change in kinetic energy of a charged 
particle having passed through a voltage V

 ■ recall that the behaviour of electrons can be explained 
using a particle model

 ■ use the equations c = f λ , E = hf and p
h
λ

=  for photons of 
light

 ■ use the equations E mv
1
2

2=  and p = mv for objects with 

 mass such as electrons
 ■ recall the diffraction pattern associated with radiation, such 
as light, passing through a narrow single slit, in particular 

 that for diffraction effects to be noticeable, the ratio 
w
λ

 
must be large enough.

KEY IDEAS

After completing this chapter, you should be able to:
 ■ explain the production of atomic absorption and emission 
line spectra, including those from metal vapour lamps, 
in terms of energy transfer between photons and atomic 
electrons

 ■ interpret spectra and calculate the energy of absorbed or 
emitted photons: E = hf

 ■ analyse the absorption of photons by atoms with reference to: 
–  the change in energy levels of the atom due to 

electrons changing state
–  the frequency and wavelength of emitted photons: 
 

λ
= =E f

c
h

h

 ■ describe the quantised states of the atom with reference 
to electrons forming standing waves, and explain this as 
evidence for the dual nature of matter

 ■ compare the production of light in lasers, synchrotrons, 
LEDs and incandescent lights

 ■ interpret electron diffraction patterns and emission 
spectra as evidence for the wave-like nature of matter

 ■ distinguish between the diffraction patterns produced by 
photons and electrons

 ■ calculate the de Broglie wavelength of matter: λ = =
p mv
h h

 ■ compare the momentum of photons and of matter of the 

 same wavelength including calculations using p
h
λ

=
 ■ interpret the single photon/electron double-slit experiment 
as evidence for the dual nature of light and matter

 ■ explain how diffraction from a single-slit experiment can 
be used to illustrate Heisenberg’s uncertainty principle

 ■ explain why classical laws of physics are not appropriate 
to model motion at very small scales.
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The particle model of matter 
unhinged
As we look at the structure of matter keep the questions ‘How do we know?’ 
and ‘What is the evidence?’ in mind. We will consider the evidence for atoms 
and key experiments that determined the characteristics of one of the particles 
within each atom, the electron.

The idea that all matter was constructed from minute, indivisible 
particles — atoms — originated in Greece about 400 bc. The word atomos 
means  ‘indivisible’ in Greek. Thinkers in these ancient times shared many of 
our understandings about atoms — that atoms exist in empty space, that they 
are in ceaseless motion and that changes we would call chemical changes 
occur when atoms change the ways they are combined.

Aristotle (389–321 bc) dismissed the possibility of the existence of empty 
space, and therefore atoms as well. Instead he supported the idea that matter 
was continuous. He developed a scheme in which matter was formed from 
mixtures of the elements earth, air, fire and water and envisaged that these 
elements could be transformed from one into another. Aristotle’s concept of 
matter became the accepted view. Like his ideas about motion, Aristotle’s views 
about matter were not strongly challenged for almost 2000 years. After New-
tonian mechanics swept away Aristotelian views about mechanics,  Aristotle’s 
views about matter also began to be questioned. People started thinking about 
atoms again.

In the eighteenth century, chemistry became a science of careful observ-
ation and measurement. Chemists performed all sorts of chemical reactions 
between solids, liquids and gases, heating compounds to break them into their 
separate components, combining materials to make new ones, weighing solids 
and measuring volumes of liquids and gases. The outcome was a huge array 
of information about the relative amounts of different substances that react 
together. By the early nineteenth century this collection of data had provided 
John Dalton, an English chemist, with the foundation for a new, revised atomic 
theory. He published his theory in two parts in 1808 and 1810. Its essential 
points were:

All matter is made from atoms, and a pure element is made of identical 
atoms. A material is an element if it cannot be broken down further into 
components.
There is a limited number of elements, and therefore a limited number of 
different atoms.
Each compound is a mixture of elements and the smallest unit of a 
compound is a grouping of the atoms of those elements.
Chemical reactions are simply rearrangements of atoms — atoms are never 
created or destroyed.
Individual atoms had not been isolated when Dalton proposed the atomic 

theory. Confidence in their existence was based on chemists’ success in mod-
elling chemical reactions as rearrangements of atoms. Within a century there 
was convincing evidence that atoms themselves were divisible, that they were 
constructed from even more fundamental particles.

The next question naturally arises: if atoms themselves are divisible, what 
types of particles make up atoms? The journey towards the discovery of fun-
damental particles, the constituents of atoms, had begun. The first fun-
damental particle to be identified was the electron, in 1897; the proton was 
discovered in 1919 and the neutron in 1932. Along the way physicists also dis-
covered cathode rays, beta particles, alpha particles and gamma rays, but they 
still lacked a consistent and integrated model for matter.

Chemical reactions are simply 
rearrangements of atoms.
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To make the situation more confusing, electromagnetic radiation — light — 
had been extremely well modelled as a wave phenomenon, but evidence from 
the photoelectric effect and radiation emitted from hot objects (black body 
radiation) required a radical shift in thinking. What emerged was the necessity 
of a wave–particle model for light at a time when matter was considered only 
as a type of particle.

In this chapter we will concentrate on the discovery of the electron. The 
electron was at first thought to be a particle but was revealed to have, like light, 
a dual character. Sometimes it behaved as though it was a particle subject to 
Newton’s laws of motion, and sometimes it behaved like a wave, demonstrating 
interference and diffraction effects. Furthermore, the observation of emis-
sion and absorption spectra of photons from and by atoms paved the way for 
interpreting the behaviour of electrons in atoms purely in terms of wave con-
cepts. Models of electrons as particles orbiting the nucleus of an atom, based 
on Rutherford’s planetary model, failed to account for the spectra observed; in 
fact, particle models led to the prediction that atoms could not exist as stable 
entities.

With the development of quantum mechanics in the 1920s, and in particular 
the Heisenberg uncertainty principle, a consistent though radical under-
standing of nature would emerge — one in which both wave and particle 
models could combine successfully under the cloak of uncertainty.

The discovery of electrons
When an electric current passes through a gas at low pressure that is contained 
in a sealed glass tube, the walls of the tube give off an eerie green glow. The 
glass fluoresces. This was discovered shortly after the important 1855 invention 
of pumps that could evacuate tubes down to 10−4 of atmospheric pressure.

Careful study of this effect did not happen immediately. It was not until 1875 
that the English physicist William Crookes began his investigations. He quickly 
concluded that the glass fluoresced when rays emitted from the negative elec-
trode, the cathode, struck it. The rays became known as cathode rays. Rays 
emitted by all cathode materials shared the same properties. A 20-year debate 
about whether the rays were electromagnetic waves or streams of charged par-
ticles was finally resolved in 1897. In that year, an English physicist Joseph John 
(J. J.) Thomson showed beyond doubt that the rays were streams of negatively 
charged particles. These are the particles we now call electrons.

Why did the debate drag on for so long? Surely it cannot be that hard to dis-
tinguish between charged particles and electromagnetic waves! The problem 
lay in the apparently inconsistent behaviour of the rays. They could pass 
through thin metal foils without damaging them — could charged particles 
do that? They were obviously deflected by magnetic fields — they must be 
charged particles then. The rays did not appear to be deflected by electric fields 
— again, they must be electromagnetic radiation. However, they travelled 
considerably more slowly than light .  .  . and so on. Thomson’s ingenuity with 
experimental work solved the problem.

The most crucial barrier to the charged particle theory was the absence of 
deflection in electric fields. Thomson was able to show that this was due to the 
rays themselves. In Thomson’s words:

On repeating the experiment I first got the same result, but subsequent experiments 
showed that the absence of deflection is due to the conductivity conferred on the 
rarefied gas by the cathode rays. On measuring this conductivity .  .  . it was found 
to decrease very rapidly with the exhaustion of the gas .  .  . at very high exhaustions 
there might be a chance of detecting the deflection of cathode rays by an electro-
static force.

anode cathode

glass glows here

Production of cathode rays

Sir J. J. Thomson 
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So, the cathode rays ionised the gas in the tube. These ions were attracted 
to the plate having the opposite charge and the line-up of ions effectively 
neutralised the charge on the plate, allowing the cathode rays to pass by 
unaffected.

cathode
ray

+++++++++++++++++++

(a) (b)

– – – – – – – – – – – – – – – – – – –

– – – – – – – – – – – – – – – – – – –
+++++++++++++++++++

cathode
ray

+++++++++++++++++++

– – – – – – – – – – – – – – – – – – –

Cathode ray path (a) at high and (b) low gas pressure. At higher pressures a 
sheath of ionised gas shields the cathode rays from the effects of the applied 
electric field.

After evacuating the chamber Thomson saw deflection! He found that the 
particles were always deflected towards the positive plate, confirming that they 
were negatively charged particles. He then made clever use of the particles’ 
deflection in both an electric field and a magnetic field to measure the charge-
to-mass ratio of the particles in cathode rays.

No matter what gas was in the chamber, what cathode current was used, or 
what magnetic field was applied, Thomson measured the same value for the 
charge-to-mass ratio, q:m, of particles in the cathode rays. He concluded that 
these negative particles were elementary particles that were contained in all 
matter and called them corpuscles. An elementary particle is one that cannot 
be split into smaller particles, just as an element is a substance that cannot be 
broken down into other substances.

Electric effects can be produced in a range of ways. A light filament can be 
made to glow using electrochemical reactions in batteries, or an electrostatic 
generator such as a Van de Graaf generator, or by using electric generators that 
exploit the interactions between electricity and magnetism (as was investi-
gated by Faraday). In each case the glowing filament is supplied with energy by 
electrons. As Thomson said in his Nobel Prize lecture:

The corpuscle appears to form part of all kinds of matter under the most diverse 
conditions; it seems natural therefore to regard it as one of the bricks of which 
atoms are built up.

Electrons were thought to be truly elementary particles.
We now know that electrons are part of a family of particles called lep-

tons and that they have a mass of 9.1 × 10−31  kg and a negative charge of 
magnitude 1.6 × 10−19  C. We also know that they form the outer layers of 
atoms in shells and that they determine the chemical properties of different 
elements due to the way they are arranged around the nucleus. 

One of the next steps in the journey towards a consistent picture of atomic 
structure and hence the nature of both light and matter was the observation 
of emission and absorption spectra.  As discussed in the next section, the 
mechanics of emission and absorption spectra reveal that electrons in orbitals 
about the nucleus of an atom cannot be modelled as particles. Electrons in 
motion around the nucleus do not emit light as they would be expected to 
according to well-accepted models for accelerated charged particles; instead, 
they exist in a stationary state, as it is called using the language of quantum 
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mechanics, and only emit photons of specific frequencies when the atom 
undergoes a change in internal energy. The observation of this type of emis-
sion spectrum, which shows discrete lines rather than a continuous spec-
trum, leads to the conclusion that electrons must be modelled as a type of 
wave phenomenon. This means they must have an associated wavelength. 
As we shall see, just as Albert Einstein caused a stir with his interpretation of 
the photoelectric effect, Louis de  Broglie would do likewise in 1923 when he 
asserted that matter had associated wavelengths. For this discovery de Broglie 
was awarded the Nobel Prize for Physics in 1929.

Emission spectra — atoms emit 
photons
If you dip a loop of wire into a solution of common salt in water and then 
place the loop in the flame of a Bunsen burner, you will see that where the 
flame touches the loop it is transformed from blue into glorious gold. If you 
then placed two slits in a line to convert the light from the flame into a 
beam, and used a prism to disperse the light from the beam and a tele-
scope to take a good look at the results, you would be following in the steps 
of the scientists who developed the field of spectroscopy. You would have 
constructed a spectrometer that could show you that spectra produced by 
solutions of sodium chloride and sodium carbonate both look like the spec-
trum shown in the figure opposite. Sodium atoms in the flame produce the 
spectrum, and it is identical to the spectrum observed when an electric cur-
rent is passed through a container of sodium gas at low pressure. Spectrom-
eters were used in the early 1860s to identify two new elements, rubidium 
and caesium, from unidentified colours in the spectrum of the vapour of a 
mineral water.

A simple spectrometer

prism or
diffraction

grating

light from
source

photographic plate

slit

A spectrometer is a device used to 
disperse light into its spectrum.
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(a) Sodium vapour street light 
(whose spectrum is dominated 
by its yellow emission lines), 
(b) characteristic colour of sodium 
flame, (c) visible line spectrum of 
sodium atoms, and (d) visible line 
spectrum of hydrogen atoms

(a) (b)

(c)

(d)

The colours in the spectrum produced by atoms in this way have become 
known as spectral lines because of the sharp lines they produce on the 
photo graphic plate in a spectrometer. These photographs are known as 
emission spectra.

The fact that the spectrum of an element is its ‘fingerprint’ makes it poss-
ible to detect tiny traces of elements in complex mixtures, and for astronomers 
to use the light emitted by remote stars to identify elements in the stars. Of 
more interest to us here is the contribution line spectra make to developing 
our understanding of both the structure of matter and the behaviour of light. 
The key is the sharp line nature of the spectra. Sharp lines have precise wave-
lengths, and in the photon model for light this indicates precise photon ener-
gies. So line spectra tell us that a particular type of atom emits light energy in 
quite specific fixed amounts. This behaviour is remarkably different to that of 
a hot filament and other incandescent light sources, which emit a continuous 
spectrum of light with a range of wavelengths.

Any model of atomic structure must be able to explain the behaviour of the 
atom leading to discrete emission spectra. In 1911 Ernest Rutherford, an emi-
nent New Zealander who directed the Cavendish laboratory at Cambridge, 
established that electrons revolved around a nucleus, with most of the atom 
being empty space. Then in 1913 Niels Bohr, a Danish physicist, proposed 
what was then a revolutionary model for the behaviour of these atoms and 
electrons. It provided the basis for our current understanding of atoms. The 
hydrogen atom — the simplest, with just a single electron revolving around a 
proton — was the initial testing ground for Bohr’s model. The discussion which 
follows focuses on the hydrogen atom.

Bohr’s model had two main ideas.
1. Each atom has a number of possible stable states, each state having its own 

characteristic energy. In each atomic state the electron is in a stable orbit 
around the nucleus. It obeys Newton’s laws of mechanics but does not 

An emission spectrum is 
produced when light is emitted 
from an excited gas and passed 
through a spectrometer. It includes 
a series of bright lines on a dark 
background. The bright lines 
correspond to the frequencies of 
light emitted by the gas.

Unit 4 Emission 
spectra
Summary screen 
and practice 
questions

AOS 2

Topic 3

Concept 1
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radiate electromagnetic waves as predicted by Faraday. (This idea of Bohr’s 
was radical. Electromagnetic theory predicted that an orbiting electron, since 
accelerating would radiate electromagnetic radiation continuously, losing 
energy and spiralling into the nucleus.) The energy of these states may be 
imagined as the rungs on a ladder. The energy of the atom must lie exactly on 
a rung of the ladder, and never between. We say that the energy levels are dis-
crete, or quantised. The energy ladder diagram for hydrogen is shown below.

positive energy:
electron free
from nucleus

n = 5  fourth excited state

n = 4  third excited state

n = 3  second excited state

n = 2  first excited state

n = 1  ground state

negative energy:
electron bound

in atom

(a)

0          

–0.5
–0.9

–1.5

–3.4

–13.6

energy (eV)

(b)

(a) Atomic energy level view of the spectral series of hydrogen (visible colours 
are shown as coloured arrows), and (b) electron orbit view of the spectral series 
of hydrogen as illustrated in (a). These lines are seen in the spectrum in figure (d) 
on page 294.

2. An atom can jump up or down from one state to another, corresponding to 
the transfer of the electron from one orbit to another. When the atom drops 
to a state having a lower energy, a photon is emitted whose energy is equal 
to the energy loss of the atom. Alternatively, an atom may absorb a photon, 
raising the energy of the atom in the process. The energy of the photon must 
exactly match an energy difference between the current state of the atom 
and one of the higher energy states it is allowed to jump to. Emission and 
absorption of photons are illustrated in the figure below.

energy

photon emitted: hf

Einitial

Efinal

(a)

energy

photon emitted: hf

Einitial

Efinal

(b)

(a) Emission of light: Ephoton = hf = ΔE = Einitial − Efinal
(b) Absorption of light: Ephoton = hf = ΔE = Efinal − Einitial

Atoms can gain energy in other ways. Absorption of energy can occur during 
a collision of an atom with an electron, the process operating in a discharge 
tube, or a collision with an ion (as occurs in a flame).

Quantised describes quantities 
that cannot be divided or broken 
up into smaller parts.

Unit 4 Quantised 
energy level 
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AOS 2
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Unit 4 Quantised 
energy level 
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atom (2)
Summary screen 
and practice 
questions
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States of the atom are commonly labelled using the terms ground state 
for the lowest energy state, followed by the excited states at higher energy, 
often labelled first excited state, second excited state, and so on. The most 
common choice for the zero of energy is the energy of an electron and proton 
that are completely free from one another — that is, stationary, at an infinite 
separation. Using this scale, the energy of an electron bound to a proton in a 
hydrogen atom is negative. The system of a stationary proton and a separ ated, 
freely moving electron has a positive energy that is equal to the kinetic energy 
of the electron.

Let us examine how this explains the emission spectrum of hydrogen. Most 
hydrogen atoms at room temperature are in the ground state. In flames or dis-
charge tubes, atoms are raised to excited states by collisions with other par-
ticles. For example, in the figure at the bottom of page 295, the atom has first 
been excited into its fourth excited state where it has an energy of −0.5 eV. 
This is indicated by the upward arrow on the left-hand side of the diagram. 
 Cascading transitions to the ground state are then possib le, with a photon 
emitted during each transition. These are indicated by the downwards arrows. 
This model of atomic structure neatly accounted for emission spectra.

Sample problem 12.1

Consider an energy level diagram for a fictitious atom shown below.

n = 1 ground state

n = 2 first excited state

n = 3 second excited state

n = 4 third excited state

–6.4 eV

–4.9 eV

–3.1 eV

–1.4 eV

Consider a large population of atoms all excited to the third excited state 
(n = 4), from which an emission spectra is able to be obtained resulting in all 
atoms decaying the ground state. Calculate all 6 possible energies in electron 
volts for photons emitted by the large population of atoms, and arrange them 
in ascending order.

There are 6 possible transitions: 3rd excited state to ground state, 3rd to 1st, 
3rd to 2nd, 2nd to ground state, 2nd to 1st, and finally 1st to ground state. 
The energy of the emitted photon is calculated by finding the difference 
between  the energies of the states for each transition. For the n = 4 to n = 1 
transition:

 Ephoton = Einitial − Efinal
  = −1.4  eV − −6.4  eV
  = 5.0  eV.

This gives the highest energy of any photons emitted by this atom when in the 
3rd excited state. The remaining five calculations give energies of 3.5  eV (3rd 
to 1st), 1.7  eV (3rd to 2nd), 3.3  eV (2nd to ground state), 1.8  eV (2nd to 1st) and 
finally 1.5  eV (1st to ground state).

Arranged in ascending order, the 6 photon energies are 1.5  eV, 1.7  eV, 1.8  eV, 
3.3  eV, 3.5  eV and 5.0  eV.

The ground state is the state of an 
electron in which it has the least 
possible amount of energy.

An excited state is a state in which 
an electron has more energy than 
its ground state.
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By collecting an emission spectrum containing many discrete spectral lines 
and establishing the photon energy associated with each line, it is possible to 
work backwards to construct an energy level diagram for an atom.

Revision question 12.1

Consider an energy level diagram for a fictitious atom shown below.

n = 1 ground state

n = 2 first excited state

n = 3 second excited state

n = 4 third excited state

0 eV

0.8 eV

2.7 eV

3.9 eV

(a) Calculate the highest energy and hence the frequency of a photon emitted 
by this atom in the n = 4 state.

(b) Calculate the lowest energy and hence the frequency of a photon emitted by 
this atom in the n = 3 state.

Sample problem 12.2

What is the shortest wavelength of light emitted by hydrogen atoms that 
were initially excited into the third excited state? The energies of states of the 
hydrogen atom are found in table 12.1.

Light of the shortest wavelength is emitted when the photons have the greatest 
energy (when the atoms experience the greatest possible energy change). This 
will be the transition to the ground state.
 For n = 4 to n = 1 transition:

Ephoton = Einitial − Efinal
 = (−0.85 eV) − (−13.61 eV)
 = 12.76 eV
 = 12.76 eV  ×  1.6021  ×  10−19 J eV−1

 = 2.0  ×  10−18 J (calculator says 2.044 28  ×  10−18 J)

E
hc

6.6262 10 J s 2.9979 10 m s
2.044 28 10

9.7 10 m.

photon
photon

34 8 1

18

8

λ =

= × × ×
×

= ×

− −

−

−

 This is ultraviolet radiation.

Revision question 12.2

What is the lowest frequency and hence longest wavelength light emitted by 
hydrogen atoms that were initially excited to the third excited state? The ener-
gies of the states of the hydrogen atom are found in table 12.1.

 

Solution:

TABLE 12.1

H atom state Energy (eV)

Third excited 
state n = 4

–0.85

Second 
excited state 
n = 3

–1.51

First excited 
state n = 2

–3.40

Ground state 
n = 1

–13.61
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Absorption spectra — atoms absorb 
photons
Atoms also absorb light. They absorb those particular wavelengths that they 
would emit if the gas were excited. These are the frequencies that corre-
spond to the differences in energy between the energy levels in the atoms. 
An absorption spectrum is a continuous spectrum with a series of dark lines 
indicating missing frequencies. Absorption spectra are produced by placing a 
sample of a gas in front of a continuous spectrum source, as shown in the 
figure below.

The atoms making up the gas absorb particular wavelengths, raising elec-
trons within the atoms into excited states. The electrons drop back to the 
ground state emitting photons, but now in all directions. This means that the 
original beam of light has very little of those absorbed colours. The continuous 
spectrum has dark bands. Generally, the dark bands in an absorption spec-
trum correspond to the bright lines in an emission spectrum of the same gas if 
it were hot.

absorption spectrum

This light is
deficient in
certain wavelengths.

incandescent
bulb producing

continuous
spectrum

Cool gas absorbs
certain wavelengths
and re-emits them

in all directions.

Absorption spectra are 
produced by a cool gas 
absorbing particular 
wavelengths of light. The 
light source is a continuous 
spectrum, and the absorption 
spectrum consists of a series 
of dark lines corresponding to 
missing wavelengths.

Comparing emission and absorption spectra
As they rely on the same energy level structure, the emission and absorp-
tion spectra often appear to be negatives of one another. However, there are 
differences.

The emission spectrum usually includes lines missing from the absorp-
tion spectrum of the same element. For example, the emission spectrum of 
the hydrogen atom includes lines for transitions to all states of the atom. The 
absorption spectrum of hydrogen atoms at room temperature, however, con-
tains lines in the ultraviolet region only, each line linked to a transition begin-
ning at the ground state. This is because virtually all atoms are in the ground 
state at room temperature, to begin with — only 

1
10171

 are not! The spectrum 

An absorption spectrum is a 
spectrum produced when light 
passes through a cool gas. It 
includes a series of dark lines that 
correspond to the frequencies of 
light absorbed by the gas.

A continuous spectrum is a 
spectrum that has no gaps. There 
are no frequencies or wavelengths 
missing from the spectrum.
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of hydrogen in the Sun is a different story. The surface temperature of 6000 K is 
hot enough for the proportion of atoms in the first excited state to rise to 

1
108

. 
Not large, but enough for their absorption spectrum to be detected.

Electron
is free.

n = 5
n = 4

n = 3

n = 2

n = 1

Electron
is bound.

(b)

energy 
(eV)

ionisation

increasing wavelength

ionisation:

photon in atom
electron out

Ek = hf − Eionisation

Electron
is free.

n = 5
n = 4

n = 3

n = 2

n = 1

Electron
is bound.

(a)

0

0

energy 
(eV)

increasing wavelength

(a) Part of the emission 
spectrum for hydrogen. Only 
the region of the spectrum 
in which transitions to the 
ground state appear is shown. 
(b) The absorption spectrum 
for hydrogen. The transfer 
of photon energy to eject an 
electron is labelled ‘ionisation’. 
All wavelengths less than 
the limiting value (that is, 
photons with energy greater 
than the limiting value) can be 
absorbed.

Series of lines in an absorption spectrum converge on a particular wave-
length. This wavelength corresponds to the photon energy equal to the ionisa-
tion energy of the electron. All light with shorter wavelengths than this limit, 
and therefore greater photon energy, can be absorbed, removing the electron 
from the atom completely. As there is no restriction on the energy of a free 
electron, all photons having energy above the ionisation energy can be 
absorbed so all light with wavelengths below the limit may be absorbed. This is 
another example of the photoelectric effect where a minimum photon energy 
must be reached before electrons will be ejected.

AS A MATTER OF FACT

A hydrogen electron in a stable or stationary state does not move in a cir-
cular, or even an elliptical, orbit around the proton — its distance from 
the proton changes continuously.

In fact the words ‘circular’, ‘elliptical’ and ‘distance’ become inappro-
priate when we consider an electron not as a particle but as some type 
of wave phenomenon. To understand and account for emission and 
absorption spectra, it is better if we think of an electron as having no 
specific location or path; instead, there is only a probability of locating 
it at various positions. This unpredictability is ultimately related to 
 Heisenberg’s uncertainty principle, which asserts that it is not possible to 
precisely measure both the location and the motion of any object at the 
same time. This realisation is the cornerstone of contemporary physics 
and the foundation of quantum mechanics.
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Do more
Photon emission 
by atoms
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Digital doc
Investigation 12.1 
Spectroscopes
doc-18556

(continued)
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The most probable distance from proton to electron is 5.29 × 10−11  m, 
corresponding to the peak in the probability density curve.

It is called the Bohr radius and often quoted as the ‘radius’ of the hydrogen 
atom. It can be useful to think of the hydrogen atom as having a spherical 
cloud of negative charge surrounding the proton, representing the unpre-
dictable motion of the electron. The diminishing density of the cloud at large 
distances from the proton indicates that the electron is less likely to be there.

While the proton–electron distance is not fixed or predictable for a par-
ticular state of the atom, the total energy of the atom is predictable. As 
the electron weaves its intricate path around the proton its kinetic energy 
changes, being greater when the electron is closer to the nucleus. However, 
the total energy does not change. There is a transformation between the kin-
etic energy and electric potential energy. Electric potential energy increases 
as kinetic energy decreases, and vice versa, keeping the total energy constant.

(b)(a)
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Proton–electron distance (nm)
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0.05 0.10 0.15 0.20 0.25 0.30

5 × 10−11

0

(a) The probability of finding an electron a certain distance from the nucleus, 
and (b) the cloud picture of a hydrogen atom.

AS A MATTER OF FACT

Fluorescent lights are more efficient in transforming 
electrical energy into light than incandescent light 
globes, but that is not the only difference between 
them. Hot solids produce continuous, rainbow-like 
spectra but the spectra produced by discharge tubes 
are simply a few lines of pure colour. The ways they 
produce photons are quite different too.

Hot filaments
Electrons passing through the hot metal filament of a 
light globe collide with ions in the lattice of the metal. 
In these collisions energy is transferred to the ions, 
causing them to oscillate about their positions in the 
lattice more vigorously. Between collisions, the elec-
trons accelerate due to the electric field, accumulating 
energy for transfer in the next collision. The oscillating 
ions emit electromagnetic radiation, across the spec-
trum of wavelengths, producing the familiar visible 
light and infra-red and ultraviolet radiation.

Fluoro tubes
Electrons in fluorescent lights are also accelerated 
by a potential difference, but they pass through a 
gas. They are often called discharge tubes, producing 
light by an electrical discharge through the gas. In 
most fluorescent tubes the gas is mercury vapour.

When an electron collides with an atom in the 
mercury gas it may transfer energy to the atom, 
raising the atom to a higher energy level. After a 
short time, about 10−8  s, the atom drops to a lower 
energy level while emitting a single photon that 
takes with it the energy lost by the atom. The gas pro-
duces the mercury emission spectrum, with strong 
lines in the ultraviolet as well as the visible lines at 
405 nm, 436 nm, 546 nm and 615 nm. The 405 nm 
and 436 nm lines have a higher intensity than the 
other lines, so the light from a mercury discharge 
tube appears bluish.
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Why is the light white?
Paint coats the inside of a fluorescent light tube. 
When UV photons emitted by the mercury atoms 
collide with the paint they may be absorbed, exciting 
the atoms in the paint to higher energy levels. The 
atoms then go through a series of transitions to lower 
energy levels, sometimes transferring their excess 

energy to other particles in collisions but most fre-
quently by emitting a photon. The energies of the 
emitted photons are less than the UV photon orig-
inally absorbed by the atom. The photon energies 
cover a wide range and approximate a continuous 
spectrum in some regions of the spectrum, making 
the light appear white.
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(a) A flourescent light tube and (b) its spectrum. Note that the spectrum has a 
histogram appearance because the intensity is plotted for each 5 nm interval.

PHYSICS IN FOCUS

The laser
The word laser is an acronym of ‘light amplification by stimulated emis-
sio n of radiation’.

Lasers produce light in a fascinating way. Ordinary photon emission 
is called spontaneous emission, but the atoms in a laser undergo stim-
ulated emission. When atoms and ions that are already in excited states 
encounter a photon that matches their excitation energy, they sometimes 
respond by dropping to the lower energy level, emitting a photon that is 
identical to the first photon, in energy, phase and direction. This process 
is called stimulated emission. As you might imagine, these two photons 
could stimulate the emission of two more photons, resulting in four iden-
tical photons, then, eight, sixteen and so on — like a nuclear chain reaction.

For the process to work, there must be a greater number of atoms in 
the upper state than in the lower state. Often a lamp is needed to pump 
the laser, providing photons to excite the atoms or ions into the upper 
energy level ready for stimulated emission. To increase the probability 
of a photon stimulating another photon emission, the laser cavity that 
contains the gas has mirrors on both ends, reflecting photons back and 
forth through the lasing material many times. The mirror at one end of 
the cavity is only partially reflecting. The photons passing through it form 
the laser beam. The distance between the mirrors is a whole number of 
half-wavelengths, so a standing wave is set up between them.

The colour of laser light is determined by the energy level structure of the 
atoms, or, for some lasers, the ions, which emit its characteristic photons.

(continued)
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(b) mirror
(100% reflective)

cathode

glass discharge 
tube containing 
He–Ne mixture

anode

power 
supply

mirror
(95% reflective)

(a) The bright, intense light of a laser 
(left), and (b) operation of a laser (above)

(a)

The warning signs make it clear — lasers are dangerous. Do not look 
into the laser while it is on! Even though the power rating on a helium–
neon laser found in a school laboratory is typically 1  mW compared to 
the 75  W of a conventional light bulb, the laser converts that energy into 
light much more efficiently. A laser also concentrates the photons it pro-
duces into a much smaller area, delivering a much greater intensity. 
Light emitted from a laser is said to be coherent because all the photons 
emitted are in phase. This coherence leads to particularly intense light 
due to constructive interference between in-phase photons.
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Making light
Visible light is one part of the electromagnetic spectrum (see the figure below).
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Accelerating charged particles
Accelerating charged particles emit electromagnetic radiation. Radio and tele-
vision transmitters are examples of this. They generate radio waves by driving 
a high-frequency electric current up and down an aerial. X-rays are generated 
when fast-moving electrons decelerate on striking a target — for example, in an 
X-ray machine or in a CRT television screen. A high-frequency oscillator gen-
erates microwaves by rapidly reversing the direction of an electric  current  — 
for example, in the magnetron of a microwave oven.

Thermal radiation
Thermal radiation is the range of radiation given off by an object due to its 
temperature. It is due to the thermal movement of the atoms and to collisions 
between the outer-shell electrons of adjacent atoms.

Whenever a force is applied to an electron, it will accelerate and emit a photon. 
Collisions between atoms can cause the outer-shell electrons to accelerate  
and thus emit photons. This is known as thermal radiation. The spectrum of 
thermal radiation depends on the distribution of speeds of the atoms in the 
material.

If a material is opaque (cannot be seen through) it radiates a continuous 
spectrum. This spectrum has a peak value at a wavelength that depends on 
the temperature of the material. As the temperature increases, the wavelength 
emitting the greatest number of photons decreases. The figure below shows 
how the intensity of radiation is distributed over a range of wavelengths for 
an ideal black body at different temperatures. Note that the overall intensity 

Weblink
Photonics resources for teachers

The magnetron of a 
microwave oven generates 
electromagnetic waves at the 
resonant frequency of water 
molecules. This makes the 
molecules vibrate faster and 
increases the temperature of 
the food.

electromagnetic waves 
cause water in the 

food to vibrate

fan magnetron

waves from
magnetron

A black body is an ideal 
absorber of energy. It absorbs all 
electromagnetic radiation that falls 
on it and does not reflect any.
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increases as the temperature increases, and that the wavelength with the peak 
intensity decreases as the temperature increases. The thermal spectrum of a 
black body is continuous. This is different to the line emission spectrum for 
individual atoms.
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Incandescent light sources
Incandescent light sources emit light because of their temperature. They are 
thermal sources. Stars, candles and light bulbs with filaments are all incandes-
cent light sources.

As an iron rod is heated in a furnace its temperature increases. At first it 
emits radiation only in the infra-red part of the electromagnetic spectrum. As 
it gets hotter, it starts to emit red light. It continues to heat up and emits more 
light in the visible region of the spectrum until it becomes white hot.

The colour of gases in a flame indicates the temperature of the flame. The blue 
part of a Bunsen burner flame is the hottest. Blue light has a shorter wavelength 
and more energy than red light. The light emitted by a candle is caused by the 
thermal motion of the atoms and molecules in the gases of the flame.

Incandescent light bulbs emit light by using an electric current to heat a 
tungsten filament. Tungsten is used because it is a metal and has a high melting 
point. The range of colours of light emitted depends on the temperature of the 
filament. The atoms in the filament vibrate violently when an electric current 
passes through it. Collisions between outer-shell electrons produce the light. 
Incandescent light bulbs are filled with an inert gas so that the metal in the fil-
ament will not be able to take part in chemical reactions and disintegrate. The 
filament reaches temperatures greater than 2600 °C.

Fluorescent light sources
Fluorescence occurs when an atom is excited from one energy state to another 
by the absorption of a photon — it might return to the ground state by making 
two or more jumps. This can occur only if there are two or more allowable 
energy states in between. At each jump, the atom may emit photons with a 
smaller energy and frequency than the absorbed photon. This process is 
known as fluorescence.

A thermal spectrum is the 
spectrum produced by a body due 
to its tempeature.

A line emission spectrum 
shows the discrete frequencies 
or wavelengths produced by an 
excited material.



305CHAPTER 12 Matter — particles and waves

There are many non-incandescent light sources that are used for indoor and 
outdoor lighting. Most of these produce visible light when an electrical current 
passes through a gas at a very low pressure. The gas is contained in a glass tube 
with electrodes at each end. The atoms or ions of the gas become excited when 
they collide with electrons emitted by the electrodes. This means that electrons 
in the atoms or ions are sent into a high energy level. When they fall to lower 
states they emit photons of light. Some of these photons are in the visible part 
of the electromagnetic spectrum. This process produces a line emission spec-
trum that is unique for each gas.

Examples of the gases used in discharge tubes include the noble gases (neon, 
argon and xenon) and metal gases such as sodium (used in streetlights) and 
mercury (found in household fluorescent tubes). Each gas produces charac-
teristic colours that are determined by the colours present in the line spectra. 
That is why sodium streetlights are yellow and neon lights are red. Mercury gas 
discharge tubes mainly emit ultraviolet light.

increasing wavelength

Gases excited by electrical discharge produce line emission spectra such as 
these for sodium, neon and mercury.

Household fluorescent light tubes are filled with mercury vapour and argon 
gas at a low pressure. The tubes are coated on the inside with phosphor particles. 
Phosphor particles absorb ultraviolet light and later re-radiate the energy as vis-
ible light by the process of fluorescence. You may have noticed that fluorescent 
lights keep glowing for several minutes after they are switched off. Fluorescent 
lights use less electrical power to produce the same amount of illumination as 
incandescent light bulbs. They, therefore, cost less to run. Energy efficient lights 
are usually thin fluorescent light tubes bent into a compact shape and mounted 
so they can be fitted to the light sockets used for incandescent globes.

starter

electrodeelectrode

phosphor coating

glass 
tube

mercury vapour

ballast
(coil of 
wire)

electron flow

argon gas

A household fluorescent light tube

Fluorescence

ground state

excited state

UV photon

photon

photon

intermediate
state



UNIT 4306

The following figure shows the spectra from some common light sources. 
The Sun and a tungsten filament lamp have the continuous spectrum of 
thermal emitters, whereas a mercury vapour lamp has the line spectrum of a 
fluorescent light source.
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Spectra from some common sources of visible light

Light-emitting diodes
You should recall from Year 11 that a light-emitting diode (LED) is a small 
semiconductor diode that emits light from its p–n junction when it is forward 
biased and a current passes through it. Semiconductors are materials whose 
properties are midway between those of a good conductor and a good insu-
lator. LEDs are used as light sources in optical-fibre systems. They can be made 
to emit any colour (red, green and yellow are the most common) by the choice 
of impurities added to the base semiconductor used in their construction. 
They can turn on and off rapidly, making them suitable for transmitting digital 
signals.

Synchrotron radiation
Synchrotron storage rings are designed to produce synchrotron radiation, the 
electromagnetic radiation emitted when charged particles are accelerated.

Characteristics of synchrotron radiation
Synchrotron radiation is emitted as photons that form a narrow cone as they 
head towards the target. The main characteristics of synchrotron radiation are:

Spectrum. Synchrotron radiation is mostly in the form of X-rays, as they are 
the most useful. However, radiation across the electromagnetic spectrum, 
from infra-red upwards, can be produced. The spectrum is also continuous, 
which means there are no gaps or missing frequencies. Any frequency can 
be found in the range.
Brightness. The intensity of the beam is hundreds of thousands times greater 
than that of conventional X-ray tubes. Brightness can be understood as 
the number of photons every second. It is more properly measured as the 
number of photons emitted per second per square millimetre of source 
size, per square milliradian of cone angle within a specific frequency range. 
Brightness can be as high as 1019 photon s−1 mm−2 mrad−2.
Divergence. The beam of radiation spreads out like a cone as it travels down 
the beamline. Typically a beam cone would have a cone angle of a few 
microradians — that is, less than half of one thousandth of a degree.

A light-emitting diode (LED) is 
a small semiconductor diode that 
emits light when a current passes 
through it.

A p–n junction is the border 
region between p-type and n-type 
materials that have been fused 
together.

A semiconductor is a material that 
has a resistivity between that of 
conductors and insulators.

Cone of radiation showing 
cone angle. The size of 
the cone angle is a few 
microradians, which is less 
than half of one thousandth of 
a degree.

cone angle
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Polarisation. The radiation from a synchrotron is polarised.
Duration. Synchrotron radiation comes in pulses, typically lasting about one 
billionth of a second.
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TABLE 12.2 Comparisons of radiation: a synchrotron, a laser and an X-ray tube

Brightness Spectrum Divergence

Synchrotron Extremely intense Continuous and wide Very narrow

Laser Very intense Single frequency Narrow

X-ray tube Intense Narrow, continuous but not 
smooth

Wide
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These features allow the X-rays to be used to investigate the fine structure of 
many materials — that is, to locate specific atoms in a molecule, even a large 
molecule such as haemoglobin that is found in red blood cells. This infor-
mation is of value to researchers across a range of fields, because it enables 
them to answer such questions as:

What are the differences between malignant and non-malignant brain 
tumours?
What is the structure of material, such as semiconductor nanocrystals, 
which may be used in the next generation of computers?
What are the steps or dynamics of a chemical reaction, either an industrial 
situation or a biological one?
To get some idea of how X-rays can answer these questions, we should go 

back in time to their discovery.

The wave behaviour of electrons
By the end of the nineteenth century, it was clear that light exhibited wave 
properties and could be very well modelled as consisting of waves. It was also 
firmly established, at that time, that matter could be modelled as consisting of 
particles. Early in the twentieth century, however, it was found that because of 
the photoelectric effect it was necessary for light to also be modelled as a par-
ticle. Was it possible that electrons, too, could exhibit wave phenomena as well 
as demonstrating particle behaviour?

Even though Bohr could calculate their energies, he could not explain why 
hydrogen electrons occupied only orbits whose energies were discrete. Why 
were they the only possible electron orbits? What was so special about them? 

A nanocrystal is a very small 
crystal with only a few hundred to 
a thousand atoms.

Weblink
The atomic lab: 
electron interference
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How did atoms make sure they emitted the right frequency to ensure they 
landed in another stationary state?

In fact Rutherford wrote to Bohr:

Your ideas are very ingenious and seem to work out well .  .  . There seems to me to 
be one grave difficulty in your hypothesis .  .  . namely, how does an electron decide 
what frequency it is going to vibrate at when it passes from one stationary state 
into another? It seems to me that you would have to assume that the electron 
knows beforehand where it is going to stop.

In 1923 French nobleman Louis de Broglie (1892–1987) suggested that 
matter also had a wavelength associated with it. He was intrigued by the fact 
that light exhibited both wavelike and particle-like properties, and on this basis 
proposed that matter may also exhibit wavelike properties. This work was done 
as his PhD thesis. De Broglie proposed that the wavelength of a particle, λ, is 
related to its momentum, p, according to the following equation:

p mv
h h

.λ = =

The constant h, Planck’s constant, is related to the particle-like behaviour of 
light and has a value of 6.63 × 10−34  J s, or 4.15 × 10−15  eV  s. The momentum of 
matter is given by the product of its mass and velocity.

We can appreciate why the wave properties of matter are difficult to observe. 
Let’s calculate the de Broglie wavelength of a 70  kg athlete running at a speed 

of 10 m s−1. Using the formula 
mv
hλ = :

6.63 10 J s
70 kg 10 m s

9.5 10 m.

34

1

37

λ = ×
×

= ×

−

−

−

This wavelength is much too small to allow for the ready observation of dif-
fraction effects as an athlete runs through a narrow opening! However, for a 
particle with a small mass, such as an electron travelling at low speed, this is 
not the case. Electrons accelerated through a 100  V potential difference would 
have a speed of approximately 6.0 × 106  m  s−1, and because the mass of an 
electron is 9.1 × 10−31  kg it would have a momentum of:

p = mv
    = 9.1  ×  10−31  kg  ×  6.0  ×  106  m  s−1

    = 5.5  ×  10−24  kg  m  s−1.

The de Broglie wavelength for these electrons is:

6.63 10 J s
5.5 10 m s

1.2 10 m.

34

24 1

10

λ = ×
×

= ×

−

− −

−

This wavelength has the same order of magnitude as the spacing between 

atoms in many crystals. When the ratio of wavelength λ  to slit width w, 
w
λ

, is 

sufficiently large, say greater than 
1

10
 for example, then diffraction effects are 

readily observable. 
The framework for testing to see if matter had an associated wavelength had 

now been constructed. Researchers could build an apparatus to fire a beam of 
electrons of specific energy and hence specific momentum and wavelength at 
a crystal and see if any diffraction effects appeared.
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Sample problem 12.3

(a) Calculate the de Broglie wavelength of a 10  g snail whose speed is 
0.10  mm s−1.

(b) How fast would an electron have to travel to have a de Broglie wavelength 
of 1  μm?

(a) The de Broglie wavelength is given by the expression:

p mv
h h

.λ = =

 Thus

6.63 10
10 10 0.10 10

6.63 10 m,

34

3 3

33

λ = ×
× × ×

= ×

−

− −

−

 

 keeping in mind that mass must be in kilograms and velocity in metres per 
second.

(b) The expression 
mv
hλ =  can be transposed to make v the subject. Thus 

 v
m

h
.=

λ

v
6.63 10

9.1 10 1 10

728.571

7.3 10 m s (to 2 significant figures)

34

31 6

2 1

= ×
× × ×

=
= ×

−

− −

−

 The speed of the electron is 7.3  × 102  m  s−1.

Revision question 12.3

Which has the greater de Broglie wavelength: a proton (m = 1.67 × 10−27  kg) 
travelling at 2.0 × 104  m  s−1 or an electron (m = 9.1 × 10−31  kg) travelling at  
2.0 × 105  m  s−1?

Finally, it is worth noting that the de Broglie wavelength associated with a 
piece of matter is inversely proportional to both the speed and mass. Hence, to 
create matter with large wavelengths, necessary for wave properties to mani-
fest themselves, matter has to travel slowly and have little mass. Since electrons 

have a mass that is approximately 
1

1800
 that of a proton or neutron, it is easier 

to detect the wave properties of electrons over those of other fundamental par-
ticles such as protons and neutrons.

Matter waves show themselves
De Broglie suggested conducting an experiment to confirm whether or not 
a beam of electrons could be diffracted from the surface of a crystal. The 
openings between atoms could be used as a diffraction grating in much 
the same way that X-rays were diffracted by thin crystals as suggested by 
Max von Laue in 1912. Clinton Davisson (1881–1958) and Lester Germer 
(1896–1971) directed a beam of electrons at a metal crystal in 1927, and the 
scattered electrons came off in regular peaks as shown in the figure below. 

Solution:
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This pattern is indicative of diffraction taking place with individual elec-
trons as they scattered off the crystal surface. In fact, the wavelength deter-
mined from the diffraction experiments was exactly as predicted by the 
de   Broglie wavelength formula. In this way, electrons were shown to have 
wavelike properties. Since then, protons, neutrons and, more recently, atoms 
have been shown to exhibit wavelike properties, but it begs the question: 
if matter can exhibit wave characteristics, what is it that is ‘waving’? More 
technically, the question is what physical variable is it that has an amplitude  
and phase?

electron gun electron beam
(in vacuum)

electron detector

nickel crystal
power supply

θ

15°

50°

30° 45° 60° 75° 90°
θ

I

0

V = 54 V
(a) (b)

The Davisson and Germer experiment. (a) Electrons emitted from a heated filament  
are accelerated towards the crystal surface. The intensity of reflected electrons 
is recorded as the angle of the detector is changed. (b) Electron intensity as a 
function of angle

Sample problem 12.4

What would be the dimensions of the array of slits required to observe diffrac-
tion of 60 g tennis balls travelling at 30  m  s−1? What about electrons travelling 
at 3.0 × 106  m  s−1? 

To observe diffraction effects, the size of the opening needs to be of the same 
order of magnitude or smaller than the wavelength of the waves. We can see 
below that the de Broglie wavelength of the tennis ball is of the order of 10−34  m 
and the electron of the order of 10−10  m.

The de Broglie wavelength of:
  the tennis ball the electron

6.6262 10 J s
0.060 kg 30 m s

3.7 10 m

34

1

34

λ = ×
×

= ×

−

−

−

 
6.6262 10 J s

9.109 10 kg 3.0 10 m s

2.4 10 m

34

31 6 1

10

λ = ×
× × ×

= ×

−

− −

−

The distances between atoms in a crystal are of the order of 10−10  m, so we 
could observe diffraction and interference when these electrons are scattered 
from a crystal. It is not surprising that we never observe diffraction and inter- 
ference effects with tennis balls, due to the extremely small wavelength,  
10−34  m, that they have.

Revision question 12.4

At what speed would neutrons (mass = 1.67 × 10−27  kg) have to be moving for 
them to demonstrate diffraction effects when passing through an array of slits 
of width 1  μm?

Solution:
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Sample problem 12.5

What voltage is required to accelerate electrons to a speed of 3.0 × 106  m  s−1?

To accelerate electrons to a speed of 3.0 × 106  m  s−1, we need to calculate the 
work done by a voltage V.

E m v

E E

V

1
2

q

k electron e
2

k electron p electron

e

∆ =

∆ = − ∆
=

where
qe is the magnitude of the charge of the electron.

⇒V
m v
2q

9.109 10 kg (3.0 10 m s )
2 1.6 10 C

26 V

e
2

e

31 6 1 2

19

=

= × × ×
× ×

= +

− −

−

So, only 26  V is required to accelerate an electron to 3 × 106  m  s−1.

Revision question 12.5

Calculate the speed of electrons accelerated from rest by an electron gun whose 
voltage is set at 13  V.

Electrons through foils
Intense, creative interest in fundamental physics ran in the Thomson family. 
Remember, it was J. J. Thomson whose ingenious experiment yielded the 
measurement of the charge-to-mass ratio of the electron. At that time there was 
no doubt that electrons were extremely well modelled as particles. However, 
G. P. Thomson, son of J. J., continued the exploration of the wave properties of 
electrons. He fired electrons through a thin polycrystalline metallic foil. The 
electrons had a much greater momentum than those used by Davisson and 
Germer. They were able to penetrate the foil and produce a pattern demon-
strating diffraction of the electrons by the atoms of the foil — further evidence 
for wavelike behaviour of electrons. The polycrystalline nature of the foil results 
in a series of rings of high intensity. A single crystal would produce a pattern of 
spots. Thomson used identical analysis techniques to those used for diffraction 
of X-rays through foils, to confirm the de Broglie relationship.

Both Thomsons were awarded Nobel prizes — J. J. in 1897 for measuring 
a particle-like characteristic of electrons, and G. P. in 1937, together with  
C. J. Davisson, for demonstrating their wave properties.

beam of X-rays 
or electrons

target
(powdered

aluminium foil)
photographic

film

Solution:

Diffraction of X-rays and electrons by 
polycrystalline foils
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Just as light requires a wave model and a particle model to interpret and 
explain how it behaves, so too does matter: it behaves like a particle in the 
sense that work can be done on it to increase its kinetic energy under the 
action of forces, but matter can also be made to diffract through sufficiently 
narrow openings and around obstacles. This requires a wave model and the de 
Broglie wavelength is used to determine the extent of matter’s wave behaviour. 
It appears we need both a particle and a wave model for both light and matter. 
Electrons passed through a voltage V acquire a kinetic energy Ek equal to qV. 
Since they have kinetic energy, they also possess momentum and, according to 
de Broglie, a wavelength. We can determine a useful relationship between the 
de Broglie wavelength of an electron (λ) and the accelerating voltage (V  ) used.

By equating the kinetic energy of the electron (Ek) to the work done by an 
accelerating voltage acting on an electron (qeV  ), we get:

E m v V

m v V

m v m V

1
2

q

2q

2 q .

k e
2

e

e
2

e

e
2 2

e e

= =

=
=

The left-hand side is just the square of the momentum of the electron, and 
hence by taking the square root of both sides:

p m V2 qe e=   or  p m E2 ,e k=

remembering that Ek is equal to qeV.
Since the de Broglie wavelength λ  is given by 

p
h

, it follows that:

m V
h

2 qe e
λ =

for a given accelerating voltage V, or

m E
h

2 e k
λ =

when the kinetic energy Ek of the electron in joules is known.

Sample problem 12.6

Some of the X-rays used in G. P. Thomson’s experiment had a wavelength of 
7.1 × 10−11 m. Confirm that the 600  eV electrons have a similar wavelength.

Electrons of energy 600  eV have passed through a voltage equal to 600  V; thus, 
their energy is 1.6 × 10−19  ×  600  J. From this their de Broglie wavelength can be 
determined. Use the relationship:

m E
h

2 e k
λ = .

Thus:
.

. .

.

6 63 10

2 9 1 10 1 6 10 600

5 0 10 m.

34

34 19

11

λ = ×
× × × × ×

= ×

−

− −

−

This is a similar value to the 7.1 × 10−11 m wavelength of the X-rays.

Solution:
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Revision question 12.6

(a) X-rays of wavelength 0.053  nm are used to investigate the structure of a new 
plastic. If a beam of electrons are to be used instead of X-rays, what voltage 
should be used to accelerate these electrons?

(b) Which has a greater wavelength: a 100  eV photon or a 100  eV electron?

Sample problem 12.7

Consider a photon and an electron that both have a wavelength of 2.0 × 10−10  m.
(a) Calculate the momentum of the photon and the electron. What do you 

notice?
(b) Calculate the energy of the photon and the electron. What do you notice?
(c) Summarise what you have found concerning the momentum and energy 

of a photon and an electron with the same wavelength.
(a) The momentum of the photon and the electron are governed by the same 

 equation, namely p
h

.
λ

=  Hence, both the photon and the electron will 

 have the same momentum because they have the same associated wave-
length. Thus:

p
6.63 10
2.0 10

3.3 10 Ns.

34

10

24

= ×
×

= ×

−

−

−

 We notice here that both the photon and the electron have the same 
momentum.

(b) To determine the energy of an object from its momentum, we now have to 
ask if it is a photon or an object with mass. The relations are different. For 
the photon, E = pc. Thus:

E 3.3 10 3.0 10

9.9 10 J or 6.2 keV.

24 8

16

= × × ×
= ×

−

−

 For the electron, however, E
p
m2

2
= . Thus:

E
3.3 10

2 9.1 10

6.0 10 J or 37 eV.

24 2

31

18

( )
=

×
× ×

= ×

−

−

−

 The electron has substantially less kinetic energy than the photon, even 
though they have the same momentum.

(c) Light and matter with the same wavelength will have the same momentum, 
and vice versa. However, when photons and electrons have the same 
momentum, they will not necessarily have the same energy. In the problem 
above, the photon has substantially more energy than the electron.

Revision question 12.7

Consider a photon and an electron that both have a wavelength of 1.0 × 10−10 m.
(a) Calculate the momentum of the photon and the electron. What do you 

notice?
(b) Calculate the energy of the photon and the electron. What do you notice?

Solution:
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Electrons, atoms and standing waves
Individual electrons act like waves when they are diffracted by atoms in 
crystals. Do electrons in the atoms also exhibit wavelike properties? They 
certainly do! Thinking of electrons behaving like waves solved the puzzle of 
stationary states. This wave model for electrons that are bound within atoms 
also neatly explained why atoms absorb and emit photons of only particular 
frequencies, and provided the answers to Rutherford’s questioning of the 
Bohr model of the atom. In essence, only waves whose de Broglie wavelength 
multiplied by an integer nλ  set equal to the circumference of a traditional 
electron orbit are allowed to exist due to these waves being the only ones able 
to constructively interfere to produce a standing wave. De Broglie speculated 
about the electron in a hydrogen atom displaying wavelike behaviour in 1924. 
A complete description of the hydrogen atom awaited a more sophisticated 
mathematical treatment called quantum mechanics. The fundamentals of this 
model were developed by Erwin Schrödinger and Werner Heisenberg later in 
the 1920s.

Louis de Broglie’s picture
Louis de Broglie pictured the electron in a hydrogen atom travelling along one 
of the allowed orbits around the nucleus, together with its associated wave. In 
de Broglie’s mind the circumference of each allowed orbit contained a whole 
number of wavelengths of the electron-wave so that it formed a standing wave 

around the orbit. Thus, nλ  = 2πr or 
r

n
2λ = π

 fixes the allowed wavelength. An 

electron-wave whose wavelength was slightly longer, or shorter, would not join 
onto itself smoothly. It would quickly collapse due to destructive interference. 
Only orbits corresponding to standing waves would survive. This is shown 
below. The concept is identical to the formation of standing waves on stringed 
instruments.

It is worth noting that the standing waves produced on a stringed instrument 

of length l have a series of possible wavelengths 
l

n
2

nλ =  where n is an positive 

integer (1, 2, 3 and so on). This series of wavelengths is called a harmonic series. 
At this level of physics, which is only an introduction to the conceptual nature 
of quantum mechanics, the harmonic series provides for a series of associated 
momenta that are discrete in value. This in turn provides for a series of energy 
states that are also discrete. This connection is in complete agreement with the 
observation of emission and absorption spectra. When you pluck a guitar string, 
only certain frequencies are produced. Likewise, when you energise an atom, 
only certain energy levels are able to be sustained, resulting in the emission of 
well-defined frequencies of light in the form of individual photons.

(a) (b)

circumference =
2 wavelengths

n = 2
(first excited state)

Unless a whole number of wavelengths
fit into the circular hoop, destructive
interference occurs and causes the
vibrations to die out rapidly.

circumference =
4 wavelengths

n = 4
(third excited state)

circumference =
9 wavelengths

n = 9
(eighth excited state)

A model of the atom showing 
the electron as a standing 
wave
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In de Broglie’s model of the atom, electrons are viewed as standing waves. It 
is this interpretation that provides a reasonable explanation for the emission 
spectra of atoms. It answers Rutherford’s remark to Bohr (see page 309). When 
a guitar string is plucked, how does it know what frequencies to vibrate at? The 
answer is: the frequencies that equate to the standing waves with wavelengths 
compatible with the length of the string.

Electrons viewed as standing waves can exist only in stable orbits with pre-
cise or discrete wavelengths. This implies that the electrons can have only dis-
crete quantities of momentum. This in turn implies that the electrons can have 
only discrete amounts of energy. Energy transitions that are made by elec-
trons occur in jumps from one high-energy standing wave to another standing 
wave of lower energy. In this way the emission spectra and, hence, absorp-
tion spectra can be understood as arising from transitions between quantised 
energy levels due to electrons having a wave-like character.

Waves or particles?
It’s a consistent story — light displays both wave and particle behaviour and so 
do electrons and all other forms of matter. The two models are complementary. 
You observe behaviour consistent with wave properties or particle properties, 
but not the two simultaneously. Remember how William Bragg expressed it: 
‘On Mondays, Wednesdays and Fridays light behaves like waves, on Tuesdays, 
Thursdays and Saturdays like particles, and like nothing at all on Sundays’? 
This delicate juggling of the two models by both light and matter is known as 
wave–particle duality.

There have been many conceptual hurdles for physicists in arriving at this 
amazingly consistent view of the interaction between light and matter. Their 
guiding questions always kept them probing for the evidence. Observations 
and careful analysis gave them the answers. Imagination, creativity and inge-
nuity were vital in their search for a more complete picture of light and matter.

We now know that both light and matter can exhibit both wave-like and 
particle-like behaviour, depending on the types of experiments performed. 
For example, when light strikes a material object, it transfers energy as if it is 
a particle (the photoelectric effect), but when light passes through a narrow 
opening or a pair of slits, it acts as if it is a wave. Likewise, matter can have 
work done on it via well-understood forces accelerating it, but matter can also 
be diffracted when it passes through a crystal, producing diffraction patterns 
similar to those of X-rays. Also, the behaviour of electrons within atoms can 
only be understood by treating them as a type of wave phenomena.

A more detailed model for the seemingly paradoxical result of both wave-
like and particle-like behaviour for both light and matter was developed in the 
1910s and 1920s. The model is called quantum mechanics, and in it wave and 
particle behaviour for both light and matter are unified successfully.

Photons have wave properties too
We do not need a beam of light to observe wave effects — every single photon 
has wave properties. Geoffrey Taylor set out to demonstrate this in 1909, while 
he was a University of Cambridge student. Taylor photographed the diffrac-
tion pattern in the shadow of a needle, but his photograph took three months 
of light exposure to produce. He used an extremely dim source, a gas flame, 
together with several smoked glass screens, to illuminate the entrance slit of a 
light-tight box. Taylor measured the light intensity entering the box, and esti-
mated that only 106 photons entered the box each second. This may not sound 
like a low intensity, but with a photon speed of 3 × 108  m  s−1 the average dis-
tance between photons was 300 m!

Wave–particle duality describes 
light as having characteristics of 
both waves and particles. This 
duality means that neither the 
wave model nor the particle model 
adequately explains the properties 
of light on its own.
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Using a box 1 m long Taylor could be sure that rarely was there more than one 
photon travelling through it at any one time, so a vast majority of photons trav-
elled through the box unaccompanied. An image appeared on the photographic 
plate after three months just as Taylor expected — a pattern of light and dark 
bands in the shadow of the needle. Taylor compared it to the pattern obtained in a 
short time with an intense light source and stated: ‘In no case was there any dim-
inution in the sharpness of the pattern’. His experiment demonstrated that inter-
ference occurred photon by photon, that the wave of a single photon filled the 
box, interfering with itself as it diffracted past the edges of the needle.

photographic
plate

lightproof box

needle

dim light source

slit filters

Taylor’s experiment

Taylor’s experiment invites us to imagine watching an interference pat-
tern build up on the photographic plate. The first few photons would produce 
an apparently random sprinkling of spots, each spot due to a single photon 
changing the chemical state of an ion in the photographic film. As the spots 
accumulated they would start to overlap and gradually a pattern would emerge 
from the randomness. During this process we would never be able to predict 
precisely where the next photon would strike the plate. The pattern predicted 
by the wave nature of the light would allow us to predict only the probability 
of a photon reaching a particular point. This pattern of probabilities would be 
clear only after many photons had made their mark.

(a) (b) (c) (d)

Imagine the gradual build-up 
of photon spots into a double-
slit interference pattern.

Taylor’s experiment is a beautiful demonstration of wave–particle duality. 
The wave and particle characteristics of light are entangled and cannot be sep-
arated. We need both models. Sir William L. Bragg expressed the idea in this 
way: ‘On Mondays, Wednesdays and Fridays light behaves like waves, on Tues-
days, Thursdays and Saturdays like particles, and like nothing at all on Sundays’. 
In fact, even when light is travelling particle by particle, its wave characteristics 
are there at the same time, determining the outcome.

Similar experiments have been done with electrons and neutrons, and 
more recently with large molecules. In all cases, the wavelike behaviour of 
these  individual entities when passing through openings has demonstrated 
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wave–particle duality in the form of diffraction effects. It seems the entities 
pass through the opening and self-interfere in the process. Importantly, they 
do this one entity at a time. Over an extended period, a statistical distribution 
builds up of where these entities go, recorded by where they strike a screen. 
The distribution is consistent with a wave model analysis for coherent waves 
of the one wavelength passing through an opening, whether it is a single slit, a 
double slit or any complicated array of openings.

Heisenberg’s uncertainty principle
In the 1920s, as quantum mechanics was being developed, it become apparent 
that the exact location of an object, x, and the exact momentum of the object, p 
were impossible to know simultaneously with complete precision. This applied 
to both light and matter. In essence, if you knew exactly where an object was, you 
would not know exactly what it was doing, and vice versa. Curiously this realisa-
tion is not unlike one of Zeno’s paradoxes articulated over 2000 years ago, relating 
to the motion of an arrow. In modern terms the uncertainty principle can be 
written in terms of the uncertainty in x, Δx, and the uncertainty in px, Δpx, where x 
is the position and px is the momentum of an object parallel to the x-axis.

Before we continue, the concept of the ‘wave packet’ needs to be introduced. 
A wave packet is a mathematical entity that has two features. It is a periodic func-
tion and it has an amplitude that varies. From this function, the position of the 
entity can be recorded with some imprecision. The momentum of the entity can 
also be recorded, since the function has a wavelength, but this also is imprecise.

wave packet

x

A wave packet

Recall that the momentum of an object is given by the equation p
h
λ

= . If the 

wavelength of an object cannot be precisely measured, then the momentum of 
that object is also uncertain. The diagram below illustrates two wave packets.

Δx large — location
not well known, 
but Δpx small 

–6 –5 –4 –3 –2 –1

–1

0

1

2

3

1 2 3 4 5 6 7

Δx small — location
well known,

but Δpx large 

Two wave packets — on the left a packet with a large ∆x, and on the right a packet with a small ∆x
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The wave packet on the left has a large uncertainty in location — Δx is 
large  — but the packet contains enough information to precisely determine 
the wavelength and hence the momentum. In the wave packet on the right, 
however, Δx is small, and as a consequence the wavelength is less able to be 
precisely determined. Hence there is an intrinsic uncertainty, Δp, in being 
able to determine the object’s momentum.

A common form of Heisenberg’s uncertainty principle asserts that:

x p
h

4x π
∆ × ∆ ≥

where h = 6.63 × 10−34 J s.

As an introductory example, let us say that the position along the x-axis of 
an electron is uncertain to the extent that Δx = 1 × 10−10 m. Using the above 
inequality, this would imply that the uncertainty in the momentum of the elec-
tron, Δpx , was approximately 5 × 10−25 N s. 

It is important to point out here that we are not discussing the position or 
momentum of an object, but rather the uncertainty or inherent error in these 
quantities. Decreasing the uncertainty in x would serve to increase the uncer-
tainty in px, the momentum of the electron parallel to the x-axis. The more 
confined or well-known that the electron’s position is along the x-axis, the 
more uncertain its motion becomes along that axis, because its momentum 
becomes more uncertain. This concept can be used to appreciate why elec-
trons in atoms are simultaneously delocalised and their motion unpredict-
able. But it also helps us to appreciate the significance of single-slit diffraction, 
where a beam of objects spreads out after traversing an opening. Traditionally 
these objects have been photons or subatomic particles such as electrons, but 
recently in Austria a research team succeeded in demonstrating diffraction 
effects using very large molecules.

Let us now consider a beam of objects moving in a fixed direction at a steady 
rate but heading straight towards a single slit of width Δx. This opening defines 
not only the width of the beam as the objects move from one side of the slit to 
the other side (notice we avoid saying that the objects went through the slit) but 
the extent of the uncertainty, Δx, in the direction perpendicular to the beam. 
Because of this confinement associated with the width of the slit, the objects 
will have an uncertainty of Δpx associated with their movement on the far

side of the slit: p
x

h
4x∆ ≥

π∆
. It is clear to see that when the width of the slit is

smaller, that is Δx is smaller, then the uncertainty in the momentum, Δpx, is 
larger. 

We should not be surprised to find objects leaving the slit with momentum 
directed either to the left or to the right of the slit, in apparent violation of 
the conservation of momentum. This is because objects passing through an 
opening may change direction due to the uncertainty principle. The smaller 
the opening is, the more likely that there will be change in the direction of an 
object in the beam as it emerges from the slit. 

We know from diffraction experiments that reducing the width of the 
opening causes the diffraction pattern to spread out, and now we have an 
explanation for why this is the case. The spreading out is due to the uncer-
tainty of the momentum of the beam of particles along the x-axis — the bigger 
the width of the single slit, the smaller the uncertainty in the momentum of 
the objects in the beam, and the higher the probability that they continue to 
travel in the direction they were travelling in on the other side of the slit. This 
relationship is illustrated in the diagram below, where a beam of objects is 
incident on a single slit of width Δx. The beam before the slit is directed along 
the y-axis with no momentum in the x-axis. The objects on the other side of the 
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slit have an uncertainty in their momenta represented by the double-ended 
arrow parallel to the x-axis due to traversing the single slit. It is the presence 
of the single slit that creates an uncertainty in the position of an object in the 
beam parallel to the x-axis, which in turn is associated now with an uncertainty 
in the momentum of the beam along the x-axis according to the Heisenberg 
uncertainty principle.

x

yΔx

beam of objects moving
in y direction towards
single slit with zero
uncertainty in Δpx

single slit

Δpx

Again, it is important to avoid saying that the objects passed through the slit; 
it is simply that at one stage they were on one side of the slit, and later in time 
they were on the other side of the slit. Using this language ensures that we avoid 
the problem associated with a similar double-slit experiment: that is, if an object, 
be it a photon or a piece of matter, is on one side of the pair of slits and then later 
on the other side, which opening did the object pass through? We also avoid any 
problem with a beam of objects spreading out when traversing a narrow opening. 
In applying quantum mechanics to a double-slit type experiment, it is not helpful 
to ask the obvious question of which slit the object passed through. Experiments 
designed to measure which of the two slits an object passes through fail to simul-
taneously detect the interference pattern associated with a double slit when 
researchers measure which opening an object passes through, just as in a sin-
gle-slit experiment researchers cannot simultaneously observe a diffraction pat-
tern and where an object is as it passes through the single slit.

There are many levels on which Heisenberg’s principle can be understood, 
but a rigorous and sophisticated interpretation is beyond the current course 
due to its mathematical complexity. A simple explanation is more helpful at 
this stage. In order for the wavelength of a wave to have a measurable value, 
the wave should consist of a least one cycle. The greater the number of com-
plete cycles, the easier it is to ascertain a value for the wavelength. For a wave 
of less than one cycle, the error associated with any wavelength measurement 
would increase. This means that for a small error assessment of an object’s 
momentum its associated wave should consist of many cycles: the more 
cycles, the smaller the error in momentum, due to a more accurate result for 
the wavelength. However, a wave pulse consisting of many cycles implies that 
the exact location of the object associated with the wave is more uncertain; all 
we know is that the object is likely to be found somewhere between the start 
and finish of the wave packet. Hence, to measure what an object is doing (via 
its momentum) we have to forsake knowing where it is, and vice versa. 

This trade-off of knowledge, arising because both light and matter manifest 
both particle (localised) and wave (delocalised) behaviours, forms the basis of the 
Heisenberg uncertainty principle. The uncertainty principle spelled the end for 
determinism, a philosophical belief arising from Newtonian mechanics in which 
the universe is considered to be a machine fully explainable by forces alone.

For the interested reader, it is worth mentioning that the variables x and px 
are in fact probability density functions indicating the probability of finding an 
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object at a point or the probability of having it a particular momentum. The 
quantity Δx is the standard deviation of x, giving information about the distri-
bution in location of an object, and Δpx is the standard deviation of px, giving 
information about the momentum distribution of an object in the x-direction.

Finally, each of the two variables x and p is the Fourier transform of the 
other. The variables x and p are referred to as complementary variables, and 
a Fourier transform is a mathematical process for finding one complementary 
variable given the other, for example finding p given x or vice versa. Another 
pair of complementary variables is energy, E, and time, t. Not surprisingly, 

there is an uncertainty principle here as well: E t
h

4
∆ × ∆ ≥

π
. This relationship 

can be interpreted as stating that energy conservation may be violated by an 
amount ΔE provided it is done within a time Δt consistent with the Heisen-
berg inequality, just as how momentum conservation may be violated by an 
amount Δpx provided it is done within an interval of space Δx.

It is a significant intellectual breakthrough to not only have rules about 
nature but also have rules about how to break or violate those rules. You will 
learn more about this if you study Physics at university.

Sample problem 12.8

A research scientist is working with a beam of photons produced by a laser of 
wavelength 640  nm. The beam of photons is directed onto a single slit. A screen 
is positioned on the other side of the slit, and a single-slit diffraction pattern is 
observed. Consider one of the photons in the beam.
(a) Determine the momentum of this photon in the direction of the beam 

and state the momentum perpendicular to the beam before the photon 
reaches the slit.

(b) The photons are incident on a narrow single slit of width 3.2 × 10−7  m. Cal-
culate the uncertainty in the momentum of the photon perpendicular to 
the beam when it appears on the other side of the single slit.

(c) Explain in terms of the Heisenberg uncertainty principle why a traditional 
diffraction pattern would be observed in terms of the momentum in the 
direction of the beam compared to the momentum uncertainty perpen-
dicular to the beam.

(a) Use the relation p
h
λ

= .

  

p
6.63 10
640 10

1.0 10 N s in the direction of the beam

34

9

27

= ×
×

= ×

−

−

−

 The momentum perpendicular to the beam is 0  N s before incidence 
on the single slit. This means that the uncertainty in the location of the 
photon in the beam is significant and is associated with the aperture of 
the laser.

(b) Use the relation x p
h

4πx∆ × ∆ ≥  with Δx = 3.2 × 10−7 and solve for Δpx. Thus,

  

p
x

h
4π.

6.63 10
4π 3.2 10

1.6 10 N s.

x

34

7

28

∆ ≥
∆

≥ ×
× ×

≥ ×

−

−

−

 On the other side of the slit, the photon has an uncertainty in its momentum 
perpendicular to the beam of at least 1.6 × 10−28 N s.

Solution:
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(c) Before they reach the slit, photons have momentum parallel to the beam 
and zero momentum perpendicular to the beam. They all travel in a 
straight line towards the single slit. When they appear on the other side of 
the slit, they still have the same momentum in the direction of the beam, 
but they now have an uncertainty in their momentum perpendicular to 
the beam. Importantly, this uncertainty allows for the photons to have 
some motion either to the left or to the right of the slit. Momentum is a 
vector quantity and thus the photons will travel in a variety of directions, 
not necessarily parallel to the incident beam, due to the narrowness of the 
opening being associated with an increase in the uncertainty of perpen-

dicular momentum. The uncertainty is 1.6 × 10−28  N  s, which is about 
1
6

 

 of the momentum of a photon in the beam. As a result, diffraction will be 
readily observable.

Revision question 12.8

An experiment consists of a beam of electrons incident on an opening of 
order 10−10  m. What would be the order of magnitude of the uncertainty in the 
momentum of electrons parallel to the width of this opening?

Why classical laws of physics are 
unable to model motion at very small 
scales
It is now clear why classical laws of physics are unable to model motion at very 
small scales. For large-scale events, the uncertainty of position has an insig-
nificant effect on the uncertainty of momentum and vice versa. This is because 
Planck’s constant is too small to be of any consequence when dealing with large 
objects. For example, if the uncertainty in the position of a moving cricket ball is 
1 × 10−6  m, this leads to an uncertainty in the ball’s momentum of approximately 
10−28  N  s. A moving cricket ball with mass 50  g = 5.0 × 10−2  kg and speed 20  m  s−1 
has a momentum of 1  N s. The uncertainty in the ball’s momentum compared to 
its actual momentum is negligible, in this case 1028 times smaller. 

However, if we now investigate objects on very small scales, Planck’s con-
stant becomes significant. If the uncertainty in the position of an electron in 
an atom is 10−10  m, then the uncertainty in its momentum is now on the order 
of 10−24  N  s. An electron with energy 1  eV (1.6 × 10−19  J) has a momentum of  
5.4 × 10−25  N  s (using the equation p mE2 k= ). In this case, the uncertainty in 
the momentum of the electron is larger than the magnitude of the momentum 
of the electron. An experimental arrangement would be incapable of ascer-
taining with any degree of certainty what this individual electron was doing, if 
indeed such an experimental question could be resolved.

For a reader new to this area of physics, they might be inclined to state that 
with better and more refined measuring equipment the ability to measure 
either location or motion could be improved. But the uncertainty principle is 
not about refinements in measurements; rather, it is an assertion about what 
can and can’t be known simultaneously and to what level of precision — an 
insignificant fact when observing day-to-day phenomena, but central to appre-
ciating the motion of very small objects. The pathway to knowledge is never 
complete, but in modern physics a significant achievement was established in 
the 1920s, when the limits to our understanding were quantified by a simple 
relationship that united the contradictory modelling in terms of particles and 
waves simultaneously.
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Summary
 ■ The behaviour of electrons — in particular, their 

deflection by electric and magnetic fields, and their 
electric charge and mass — is strong evidence for the 
particle-like nature of electrons.

 ■ Atoms emit light of precise frequencies. This light, 
when passed through a spectrometer, is known as an 
emission spectrum.

 ■ All atoms of the same element emit the same spec-
trum. Different elements produce their own distinc-
tive spectra.

 ■ In contrast, a hot solid or liquid material emits a 
continuous spectrum that is independent of compo-
sition. These sources are often referred to as incan-
descent light sources.

 ■ Synchrotron radiation is produced when a charged 
particle accelerates. In the storage ring of a synchro-
tron, the charged particles move in circular paths and 
hence are accelerating; the radiation is very intense, 
comes in a narrow beam and covers a broad range of 
frequencies.

 ■ LEDs produce light from spontaneous emission 
when electrons fall from high to low energy levels or 
bands within a semiconductor. The loss in electron 
energy equals the energy of the emitted photon.

 ■ Lasers produce light by a process called stimulated 
emission. The radiation produced is monochromatic 
and coherent.

 ■ Absorption spectra consist of a continuous spectrum 
with dark lines corresponding to particular missing 
wavelengths. In general, these dark lines correspond to 
the bright lines of emission spectra for a particular gas.

 ■ To account for emission spectra, Neils Bohr pro-
posed a radical model where electrons within atoms 
have stable orbits but only discrete energy levels are 
allowed.

 ■ When an atom jumps from a high energy level, Einitial, 
to a lower energy level, Efinal, resulting in a difference, 
ΔE, a photon of light is emitted with frequency, f, 
according to the equation hf = ΔE. Hence, the observ-
ation of emission spectra having precise frequencies 
is evidence for atoms having discrete energy levels.

 ■ The best model for atoms having discrete energy 
levels is to interpret electrons in atoms as behaving 
as a standing wave. The allowable standing waves are 
known as orbitals.

 ■ In 1924 Louis de Broglie suggested that electrons 
may exhibit wave properties under suitable con-
ditions. He proposed a diffraction experiment using a 
beam of electrons and a crystal to act as a diffraction 
grating.

 ■ The de Broglie wavelength, λ, can be determined from 

 the momentum, p, according to the equation 
p
hλ = . 

 Remember also that the momentum of a particle is 
given by p = mv, where m is the mass and v is the speed.

 ■ Diffraction effects can be observed with waves when 
the wavelength is the size of a slit or greater. When 
the wavelength is small, then diffraction effects are 
difficult to observe.

 ■ In 1927 Clinton Davisson and Lester Germer estab-
lished the wavelike behaviour of electrons when they 
performed a diffraction experiment. Not only did 
they observe diffraction effects, they also established 
that the wavelength of the electrons in the beam was 
consistent with Louis de Broglie’s prediction.

 ■ Both light and matter exhibit both particle-like and 
wavelike behaviours under the right circumstances.

 ■ Double-slit experiments provide evidence for the 
dual nature (particle and wave) of both light and 
matter under conditions where single photons or 
material objects are used to illuminate the slits.

 ■ Heisenberg’s uncertainty principle asserts that it is 
not possible to simultaneously know both the pos-
ition and the momentum of an object along a par-
ticular axis. The uncertainty in each variable, Δx 
and Δpx respectively, is subject to the inequality 

x p
h

4πx∆ × ∆ ≥  where h = 6.63 × 10−34  J  s.

 ■ Heisenberg’s uncertainty principle can be used 
to explain diffraction patterns produced by either 
beams of light or matter incident on a single slit.

 ■ Classical laws of physics are not appropriate when 
investigating motion on very small scales, as the 
uncertainties associated with both position and 
momentum become sizeable in comparison to their 
values.

Questions
Electrons and light
 1. What key features in the behaviour of electrons 

indicate that they are particles? In particular, how 
did experiments with cathode rays conclude that 
the rays were elementary particles?

 2. Explain why the beam of electrons is deflected 
upwards in figure (b) on page 292.

 3. In what way is the reddish glow of light from a 
dying fire different from the reddish glow from a 
neon discharge tube?

 4. Light reaching Earth from the Sun is a continuous 
spectrum with many dark lines. These lines are 
called Fraunhofer lines. What is their origin?
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 5. Explain why spectral lines in the emission 
spectrum of an element correspond to absorption 
lines in an absorption spectrum for the same 
element.

 6. A beam of red and green light appears yellow to 
a normal human. How could an experiment be 
devised to decide whether a beam of light that 
appeared yellow was in fact spectral yellow light or 
a mixture of red and green light?

 7. Describe the main features of light emitted by the 
following objects. Use the descriptors continuous 
spectrum/discrete spectrum, temperature related/
temperature independent, monochromatic, 
polychromatic, coherent/incoherent, and 
polarised/non-polarised.
(a) An incandescent light globe
(b) A candle
(c) The Sun
(d) A white hot bar of iron
(e) A fluorescent light tube
(f) An LED
(g) A laser

 8. Explain why different LEDs can emit different 
colours.

 9. An LED emits light of wavelength 5.8 × 10−7  m. 
Calculate the band gap of the semiconductor 
material in the LED.

 10. The band gap in an LED is 1.8  eV. Calculate the 
average wavelength of light emitted by this LED.

 11. Explain what is meant by the word ‘coherence’ 
when applied to photons of light.

Matter as waves
 12. Calculate the de Broglie wavelength of the 

following particles.
(a) A proton travelling at 3.0 × 107  m  s−1

(b) An electron accelerated by a voltage of 54  V, 
the voltage used by Davisson and Germer in 
their electron diffraction experiment

(c) A tennis ball (m = 0.20  kg) moving with a 
speed 50  m  s−1

 13. In X-ray tubes the electric potential energy of 
electrons is transformed into the energy of X-ray 
photons. Consider a beam of electrons accelerated 
through 5  kV from rest, which rapidly decelerate 
when they collide with the anode of the tube.
(a) What is the kinetic energy of these electrons as 

they reach the anode, in joules?
(b) If the entire energy of each electron is 

transformed into the energy of a single 
photon, what is the wavelength of the 
resulting X-rays?

 14. Explain what William L. Bragg meant when he 
said: ‘On Mondays, Wednesdays and Fridays 
light behaves like waves, on Tuesdays, Thursdays 
and Saturdays like particles, and like nothing at 

all on Sundays’. Is this a good description of the 
behaviour of light?

 15. A beam consists of electrons with speed  
2.5 × 106  m  s−1 inside an evacuated tube. The beam 
is directed towards a thin crystal of sodium chloride 
that can act as a diffraction grating. The spacing 
between atoms for this crystal is 2.8 × 10−10  m.
(a) Calculate the momentum and the de Broglie 

wavelength for electrons in the beam.
(b) By comparing the wavelength to the atomic 

spacing, discuss whether or not the electrons 
would diffract significantly.

 16. Electrons may display wave properties and 
diffract when passed through narrow openings. 
In a particular experiment a scientist uses an 
electron gun to direct a beam of electrons towards 
a crystal. It is thought that the spacing between 
the atoms in the crystal is about 5 × 10−10  m. He 
adjusts the accelerating voltage of the electron gun 
to 3.0  kV.
(a) Find the energy of electrons in the beam in eV 

and in joule.
(b) Calculate the momentum and hence the de 

Broglie wavelength of the electrons.
(c) Determine whether or not the scientist should 

expect to observe significant diffraction 
effects.

(d) How should the scientist adjust the 
accelerating voltage make electrons diffract 
significantly when passing through the 
crystal?

  He now decides to use photons to obtain the 
same diffraction pattern when passing a beam of 
photons through the same crystal.
(e) What wavelength and hence momentum 

photons should he use?
(f) What is the energy of these photons? Give 

your answer in joule and electron volt.
 17. Calculate the speed of an electron that has the 

same de Broglie wavelength as a photon of red 
light whose frequency is 4.5 × 1014  Hz.

 18. An electron and a proton are accelerated through 
the same potential difference.
(a) Which will have the greater de Broglie 

wavelength?
(b) Using a potential difference of 1000  V, 

calculate the de Broglie wavelength for both 
an electron and a proton.

The mass of a proton is 1.67 × 10−27  kg.
 19. Electrons can be accelerated with a potential 

difference in an electron gun. In order to make a 
beam of electrons whose de Broglie wavelength is 
2.0 × 10−10  m, what potential difference must be 
used?

 20. Which has the shorter wavelength: a 10  eV 
electron or a 10  eV photon?
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Energy level transitions
 21. There are two common ways of depicting the 

energy levels of an atom. In one method the 
ground state is taken to be zero energy, and in the 
other method the ionisation energy is taken to 
be zero. The first excited state of mercury atoms 
is known to be 4.9  eV above the ground state, the 
second excited state is 6.7  eV, the third excited 
state is 8.8  eV, and the ionisation energy is 10.4  eV 
above the ground state. Using the second method, 
where the ionisation energy is taken as 0  eV, give 
the energies of the ground state and the first 3 
excited states. Note: Your values will be negative 
numbers, and a drawing of the energy level 
diagram will assist you.

 22. Hydrogen is the name given to the atom 
consisting of the least number of particles — one 
proton and one electron.
(a) Explain what the word ‘ground state’ means 

when used to discuss atomic structure.
(b) Draw a diagram representing the first 5 energy 

levels (the ground state plus the first 4 excited 
states) in a hydrogen atom with the energy 
axis drawn to scale and each energy level 
given based on the ground state (taking the 
ground state as having zero energy). Use the 
electron volt as the energy unit. As a starting 
point, the ionisation energy of hydrogen is 
13.6  eV, but you will need to find additional 
information via the internet or some other 
source.

(c) Conduct research to find out about the Balmer 
series, the name given to a group of lines 
that appears in the emission spectrum of 
hydrogen.

 23. The light from a red light-emitting diode (LED) has 
a frequency of 4.59 × 1014  Hz. What is the energy 
change in electrons within atoms that produce 
this light?

 24. Light of wavelength 420  nm is absorbed by gas 
consisting of helium atoms.
(a) Explain in terms of energy transfer to the atom 

why the light is absorbed.
(b) Calculate the increase in energy of an electron 

within a helium atom that has absorbed a 
photon of wavelength 420  nm.

 25. Fill in the gaps in the following table.

Element λ (nm) f (Hz) E (J) E (eV) p (N s)

Red light 3.1 × 10–19

Electron 1.96

Blue light 405

Electron 405

 26. The ground state and the first three excited states 
of hydrogen are shown in the diagram below. An 
emission spectrum of hydrogen gas shows many 
different spectral lines.
(a) Copy the diagram and label the ground state 

and first three excited states.
(b) Draw arrows to represent all possible six 

transitions that may occur when hydrogen 
atoms in states lower than the fourth excited 
state emit a photon of light.

(c) Calculate the energy of each of the possible 
six photons.

(d) Determine the wavelength of the photon 
having the least and greatest energy in your 
answer to part (c).

energy
(eV)

12.8

12.1

10.2

0

 27. Explain why there are dark lines in an absorption 
spectrum of a gaseous sample. Why are those 
particular colours missing from the otherwise 
continuous spectrum of light passed through a 
gaseous sample?

 28. When sodium chloride (common salt) is placed in 
a flame, the flame glows bright gold. The following 
diagram shows some of the energy levels of a 
sodium atom.
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energy
(eV)

0

–0.77

–1.37

–3.01

–5.12

ionisation

n = 4

n = 3

n = 2

n = 1

(a) On a copy of the diagram, label the ground 
state of the atom, and the first excited state.

(b) Draw arrows to represent the change in energy 
of atoms in the ground state that absorb 
energy during collisions with other particles in 
the flame.

(c) Calculate the wavelength of light emitted by 
these atoms as they return to the ground state 
in a single jump. Which energy change is 
responsible for the yellow glow?

 29. The figures on page 299 show the emission and 
room temperature absorption spectra of hydrogen. 
Most, but not all, of the emission spectrum is just 
the ‘negative’ of the absorption spectrum. The UV 
line at 0.0122  nm appears in both the emission 
spectrum and in the absorption spectrum, but the 
visible line at 656  nm appears only in the emission 
spectrum — why?

Heisenberg’s uncertainty principle
 30. Explain each term in the Heisenberg uncertainty 

inequality.
 31. An electron is confined to be inside an atom of 

diameter 2.0 × 10−10  m. Use this size to estimate 
the uncertainty in the momentum of this electron.

 32. It is known that electrons do not exist inside the 
nucleus of an atom. 
(a) Taking the size of a nucleus to be 1 × 10−15  m 

and using this size as the uncertainty in the 
position of an electron potentially positioned 
inside a nucleus, calculate the uncertainty in 
the momentum of this electron.

(b) If electrons can have this amount of 
momentum due to uncertainty, calculate the 
kinetic energy that these electrons could have 
due to the uncertainty principle. Use the 

 equation E
p
m2k

2
= . Express your answer in joules 

 and in electron volts.
(c) On the basis of your answer to part (b) and 

experimental evidence regarding electron 
energies, explain why electrons do not occupy 
the nucleus.

 33. A student tells you that she is perfectly still with 
zero momentum. Use the uncertainty principle 
to explain why her position will have a relatively 
large uncertainty.

 34. Use the concept from question 33 to argue why 
achieving absolute zero kelvin is unobtainable.

 35. Why does a diffraction pattern spread out when 
the width of the single slit is reduced in size?

 36. Sketch the diffraction pattern that would be 
observed if an opening consisted of two slits 
perpendicular to each other with slit 1 twice the 
width of slit 2. Below is a diagram of the aperture.

x

y

Δy

Δx

 37. Why is significant diffraction not observable 
when a person walks through a doorway into a 
classroom? Estimate the momentum of a person 
and the width of a doorway to illustrate this point 
by comparing the momentum of the person 
with the uncertainty associated with sideways 
momentum due to the person passing through the 
doorway.

 38. Why are the classical laws of physics insufficient to 
deal with motion at very small scales?



KEY IDEAS

After completing this chapter, you should be able to:
 ■ recognise and generate independent, dependent and 
controlled variables

 ■ apply physics concepts to the topic of the investigation
 ■ demonstrate the methods of scientific research and 
techniques of data collection with reference to their 
precision and reliability and the significance of uncertainty 
in the data

 ■ conduct an investigation safely
 ■ fully analyse the data, identifying patterns and 
relationships and acknowledging the limitations due 
uncertainty in the data

 ■ identify evidence that supports or refutes their expected 
findings or physics explanations

 ■ describe the key findings of the investigation and their 
relationship to concepts studied

 ■ use the conventions of scientific report writing and 
scientific poster presentation, including physics 
terminology and representations, symbols, equations 
and formulae, units of measurement, significant figures, 
standard abbreviations and the acknowledgment of 
references, if used.

13 Practical investigations

CHAPTER

As part of Unit 4, you will conduct a practical investigation 
on one area of one of these topics: electric and magnetic 
fields, gravitational fields, forces and energy of motion, 
electromagnetism, and the properties of waves and light.



UNIT 4328

What is the benefit to you?
As part of Unit 4, you will conduct a practical investigation on any aspect of the 
content in this book. This includes electric and magnetic fields, gravitational 
fields, forces and energy of motion, electromagnetism, and the properties of 
waves and light.

The practical investigation lets you follow your own interests. Enjoy creating 
solutions to questions that are important to you, managing your work and 
telling others about what you have done. Your study of Physics should help you 
to be more scientific. 

Reflect on what it means to be ‘scientific’, and the characteristics of scientific 
ways of doing things compared to non-scientific ways. You will improve your 
ability to solve problems, use resources and communicate ideas. These attrib-
utes are useful in everyday life and highly valued in the workplace.

Being scientific means making use of observations, experiments and logical 
thinking to test ideas. 

What is involved?
Many of the experiments you have done as part of this course were designed 
with clear instructions and specific questions to answer. They are often designed

to experimentally confirm a known relationship such as F m
r

T
4 2

2= π
 or F = nBIl.

In this investigation, there is more responsibility on you to plan and carry out 
the task. It gives you the opportunity to show your skill and imagination in 
experimental design, commitment to a task and your communication ability in 
explaining your results.

The topic can be one of your choosing and you can work individually or with 
another student. It is a rare topic that requires three pairs of hands and eyes.

The investigation will require a significant amount of class time. Your teacher 
will set aside two to three weeks for the activity, so some planning and organi-
sation on your part will be needed to achieve a personally satisfying outcome. 
The table below will assist with your planning.

Your teacher has some flexibility as to when to schedule this activity. It could 
be towards the end of Term 3, when you have been exposed to all the Areas 
of Study from which you can select a topic, or it could be earlier in the year as 
part of or after Unit 3, which is rich in possible topics.

How does this investigation differ from the  
Unit 2 investigation?
Much of the process of undertaking the Unit 4 investigation is unchanged from 
the Unit 2 investigation, but the Unit 4 investigation is more substantial. It 
requires more class time, consideration of more aspects, and a deeper level of 
analysis. The assessment is also more significant.

For Unit 4 you will again investigate the effect of varying two independent 
variables, but this time both variables must be continuous. This increases the 
amount of data collection, and the opportunities for data analysis and identi-
fication of mathematical relationships between your dependent variables and 
both independent variables.

The investigation will also contribute to your study score for this subject. 
Your teacher’s assessment of your investigation will make up 7% of your score. 
Each of the three Areas of Study in Unit 3 contributes 7%, while the other two 
Areas of Study in Unit 4 each contribute 6%, giving a total of 40% for your 
teacher’s assessment of your work for the year. The end-of-year exam makes 
up the remaining 60%.
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You will also present a summary of your investigation as a poster, preferably 
as an electronic poster, that is, one PowerPoint slide, as that will be an easier 
format to work with than an A1 sheet of paper.

It is also expected that the end-of-year exam will include questions on the 
 student-designed practical investigation. Given that students across the state and 
in your class will be investigating a diverse range of topics, any questions would 
need to be of a generic nature, that is, they could be answered by any student 
regardless of the topic they investigated. Examples of such questions include:

A student’s procedure is described with some faults. You are asked to iden-
tify the faults and suggest alternatives.
Data has been graphed and analysed, but with some errors in both the 
graphing and analysis. You are asked to correct the graph and recalculate 
some parameters from the graph.

The end of the chapter has some sample questions with more on JacPlus.

TABLE 13.1 Investigation planning with sample schedule

Task Due date

Your teacher spends some class time introducing the task, explaining what is 
expected of you, suggesting some possible topics or brainstorming other topics 
with the class. They will also outline the timeline and distribute a form for you to 
write down one or more topics that you would like to investigate.

About two weeks before formal 
experimentation begins

You return your list of possible topics for approval by your teacher, who then 
provides feedback, recommendations and finally approval.

A few days later

Submission of your detailed research proposal

Your teacher may decide to make this a formal task, done under test conditions in 
class and assessed, but with feedback provided afterwards on aspects that might 
need to be addressed before you begin.

At the beginning of the week 
before your experiment begins

Your requested equipment is assembled by the teacher and lab technician. By the end of the week before your 
experiment begins

Your investigation begins.

First period: Set up your equipment, take some preliminary data, finetune your 
procedure, and troubleshoot any difficulties with the equipment and the taking of 
measurements

Second period: Begin the cycle of measurements and data analysis. Progressively 
graph your results, evaluate trends and adjust your procedure.

Week 1

Continue the cycle of measurements and data analysis, leading to a review of 
progress and further more detailed measurements.

Move on to investigating the second continuous independent variable.

Week 2

Finalise the investigation of the second variable.

Begin preparing your overview of the investigation: summarising your procedure, 
what you have found out, what difficulties you had and how you addressed them.

Week 3

Finalise writing the sections of your report and paste them into a poster template.

Submit your log book and poster.

Beginning of week 4

Selecting a topic
Coming up with a topic is not something that happens straight away. You need 
to take some time to consider it. You want to investigate a topic that interests 
you, that provides opportunity for some challenge, yet can be done in the time 
available and with the resources available within the school.
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The topic of your investigation can come from any of the content you are 
studying this year, so as you and your teacher are going through the course, you 
should be recording for future reference any possible topics that come to mind.

When your teacher formally introduces the task, you may wish to get 
together with some of your classmates and brainstorm a batch of topics. This 
can be an effective way to identify possible topics. 

Form a group of three to five and appoint a leader.
Draw a grid on a large sheet of paper with headings across the top such as: 
Hobbies and interests, Sports, Science in the news, Investigations you did 
in previous years, and Course topics. Down the side have types of investiga-
tions such as: Investigating the operation of a device or technology, Solving 
a technological problem, Investigating a physical phenomenon.
Pick a box from the grid and brainstorm some topics for that box, then move 
onto another one.
If other groups have done the same task, combine your entries with theirs.

Hints for brainstorming:
Concentrate on quantity, not quality. Get down as many ideas as you can, as 
fast as you can. Resist the temptation to evaluate as you go — do that later.
Be prepared to be outlandish. Humour is creative. Ideas that are preposter-
ous might trigger ideas that are not.
Practical investigations have been a popular feature of physics courses in 

many countries for several decades, so there are thousands of possible topics 
if you search around. Some are listed below, and a document that contains 
weblinks and many more additional topics can be found in your eBookPLUS. 
You should check through these lists and see what sparks your interest because 
choosing a topic that intrigues you will ensure a high level of commitment and 
a sense of pride in the finished work. Avoid seemingly sophisticated topics; 
everyday topics are not only readily accessible and initially straightforward to 
investigate, but they often have hidden subtleties.

Turning the topic into a good question
Turning the topic into a question focuses your mind on what you want to find out.
The question needs to be:

one that experimenting can answer
one worth investigating to you
practicable, given your knowledge, time and the school resources
asked in a way that indicates what you will do.

Submitting a research proposal
Once your teacher has approved your topic, the real work begins. On the next 
page is a typical proposal sheet that you could be asked to complete.

Keep a log
Use a separate, bound exercise book. Use it for thinking, calculating, drawing, 
leaving messages and preparing your report. You can use it to record your data 
if you don’t want to use a computer. You can use the logbook to show your 
teacher how your work is progressing. Your logbook will also be assessed by 
your teacher.

Your logbook can include:
your initial ideas
notes from brainstorming
notes from background reading
equipment set up and plan
your observations, measurements, data analysis and graphs
difficulties you experience.
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Practical investigation proposal

Name: Jill

Partner’s name: (optional)

Title of your investigation:

Jac

The efficiency of a DC motor

Briefly describe its purpose:
(A brief sentence, but needs to be
precise)

To investigate how efficiently a DC motor converts electrical energy into
gravitational potential energy by raising a mass

Write down three starting questions
you want to answer.
(These are to help focus your
planning.) 

What is the most efficient voltage for a given mass?
How does this voltage vary with the mass?
For a given voltage is there a mass the motor cannot lift?
Is the mass raised at a constant speed?

List independent variables,
indicating which are continuous
and which are discrete, as well as
dependent variables.
(Enables your teacher to see if you
have thought of all the obvious
variables.)

Independent: voltage supplied to the DC motor, the mass being raised, the
diameter of the spindle about which the string from the mass is wrapped, the
type of DC motor (discrete)
Dependent: The current drawn by the DC motor, energy supplied to the
DC motor, the time for the mass to travel a measured distance, gain in
gravitational potential energy

List the steps in your experimental
design.
(This is an important stage in your
planning and it will enable your
teacher to see if there is anything
you  have forgotten.)

1. Connect the circuit and attach a mass to the string. Set to a low voltage and
 turn on the power supply. Adjust arrangement of equipment and voltage and
 mass values to get a safe set-up that is capable of producing data without
 damaging the motor.
2. Adjust timer, card and photo gate set-up to produce consistent readings.
3. Set the mass at a known value, set the voltage at a low value, and measure
 the current and time at least five times.
4. Increase the voltage settings in increments of 1 V and repeat the measurements.
 Use a voltage divider circuit if in-between voltage values would be useful.
5. Increase the mass progressively and repeat steps 3 and 4 each time.
6. Check for possible intermediate mass values to identify maximum efficiency.

List the equipment and measuring
instruments that you plan to use.
(For your teacher to see whether
you have the right tools for the
task.)

DC motor with spindle on the shaft
Masses — either slotted masses and/or plasticine
Light, thin string, possibly with a small card of known length attached near the
bottom to trigger a photo gate
Variable power supply, voltmeter and ammeter, switch
Ruler and balance
Timer, preferably electronic, e.g. a photo gate   

Any special requests
(E.g. equipment may need to be left
set up between classes, or access
at lunchtime or after school may be
needed.)

Not really.

Sketch your experimental set up.
(This will make your first day of
investigating smoother, and your
teacher may be able to suggest
refinements.) 

List the Physics concepts and
relationships that you expect to use
in your investigation.
( To give your teacher an indication
of the extent of your understanding
of the topic) 

Electric energy consumption, W = VIt
Gain in gravitational potential energy, GPE = mgΔh

Efficiency =
VIt

mgΔh

photo gate
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If you are using a computer or a school server as your log book, you should 
ensure that the software enables your entries to be reliably date stamped. This 
authenticates the work as your own.

Variables
Variables are the physical quantities that you measure. For some variables you 
will set the value at the start of each experiment; others will be determined 
by your experiment; and sometimes there may be variables that you calculate 
using your measurements.

Independent variables are the ones whose value you determine.
You would not investigate all of these; you should choose just two that 
interest you. However, your report should mention them all to show your 
deep understanding of the problem you are investigating. The ones you 
don’t investigate will have constant values during your experiment, so they 
could be called fixed or controlled variables.
There are two types of independent variables:

 – Continuous variables are ones that can take any numerical value, such as 
the release height of a parachute. This means they can be graphed using x- 
and y-axes. A graph can reveal a mathematical relationship between two 
quantities. 

 – Discrete variables are ones that allow for different types, for example 
different-shaped parachutes. These can only be presented as a column 
graph, which enables comparison but does not reveal a mathematical 
relationship.

Dependent variables are the ones that come from your experiment. Their 
values are determined by the independent variables.
Again, you would not analyse all of them. Just one will normally suffice.

Revision question 13.1

In this investigation, two independent continuous variables are needed.
 Jill and Jac plan to investigate the sweet spot of a cricket bat. The variables they 
are considering are: (i) the position on the bat where the ball hits, (ii) the speed of 
the ball at impact, (iii) the mass of the bat, (iv) the profile of the bat (e.g. a length of 
timber as a model for the bat versus a real bat), (v) the mass distribution of the bat 
(e.g. whether the bat is hollowed out or not), (vi) whether the handle is fixed but 
the bat is able to swing or whether the handle is free to move. Classify these inde-
pendent variables into the two categories: continuous and discrete.

Revision question 13.2

List as many dependent variables as you can think of that Jac and Jill might 
consider for their investigation, including ones that can be calculated from 
others.

The end of this chapter has some more questions on identifying variables.

Selecting your measuring instruments
Your school will have a range of measuring instruments. They will vary in pre-
cision and ease of use.

You won’t always need to use the most accurate instrument. A simple instru-
ment that allows for quick measurements will be enough more often than not. 
Sometimes a simple stopwatch is just as good as an electronic timer, and a 
beam balance may compare well to a very accurate top loading balance.
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Some instruments that you might consider are listed below based on what 
they measure.

Mass
Slotted masses of known mass. Simple to use; accurate; comes only in 
multiples of a set weight, e.g. 50 g. 
Beam balance. Accurate with a large range of values; can be time consuming 
to measure several masses. 

Spring balance. Quick to use; covers a large range of masses; not very 
accurate. 
Top loading balance. Very accurate; very good for small masses; simple to 
use. With equipment set up above the balance, it can be used to measure 
small variations in attractive and repulsive forces such as magnetic force, 
electric force and surface tension.  If the balance sits on a laboratory jack, 
force against distance can be easily measured.
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Length
Metre ruler. Accurate; good for a range of distances; can be read to about 
0.5 mm. 
Laboratory jack.  For fine adjustment of height.
Vernier calliper. For precision measurement of short distances; takes some 
time to learn how to use.
Micrometer. For precision measurement of thicknesses; takes some time to 
learn how to use and can be easily damaged. 

Time
Stopwatch. Simple to use; accurate down to your response time; not reliable 
for short time intervals. 
Electronic timer. Requires some instruction; very accurate; best suited for 
short time intervals; can be used with electrical contacts and photogates. 

Motion
Ticker timer. Simple to use; limited in accuracy; best with objects moving 
over a short distance; can be time consuming to analyse. 
Air track. Very accurate, particularly if used with photogates; very effective 
in studying collisions; takes some time to set up, but data collection is very 
efficient once done. 

eLesson
Using Vernier callipers
eles-2558
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Ultrasound motion detector. Quite accurate; useful with real motions; lots of 
data which means data analysis in Excel can be time consuming. 
Video with analysis software. Quite accurate; requires some setting up; data 
obtained from software; data analysis in Excel can be time consuming. Free 
video motion analysis software are Tracker and PhysMo. Digital cameras 
with high-speed video are useful for measurement of short, fast events.

Electrical
Meters: Voltmeters, ammeters, galvanometers. Easy to set up, but care is 
needed to ensure the meter is wired into the circuit correctly, otherwise the 
meter can be damaged; large range of values; usually analogue displays. 
Multimeters. Easy to set up; more tolerant of incorrect use, but can be 
damaged if incorrectly connected to a high current; large range of values; 
usually digital displays. 

Specialist equipment
Cathode-ray oscilloscope (CRO). Even though the CRO is basically a visual 
voltmeter, it is a versatile instrument. It can measure both constant and 
varying voltages. The sweep of the trace across the screen can be used to 
measure time intervals of the order of millionths of a second. Many trans-
ducers, such as microphones, produce a voltage that can be displayed on 
the screen, either for analysis or measurement of very short time intervals. 
There are also computer versions of CROs that can be freely downloaded.
Data loggers. There are sensors now available for most physical quantities, 
such as temperature, pressure, light intensity, motion, force, voltage, current, 
magnetic field, ionising radiation. The recording of data by these sensors for 
later analysis greatly facilitates practical investigations.
Apps. There are increasing numbers of apps that perform measurement 
functions. The accuracy of each needs to be confirmed before being used 
in a formal investigation, but it is an area worth exploring. Some sources 
include Physics Toolbox and Sensor Kinetics.

Making the most of a measurement
Limits to precision and uncertainty
Every instrument has a limit to how precisely it measures. The scale or digital 
display imposes a constraint on how many digits you can record. The scale or 
display also reveals the tolerance of the measurement.

A metre ruler has lines to mark each millimetre, but there is space between 
these lines. You could measure a length to the nearest millimetre, but because 
of the space between the lines, if you look carefully, you can measure to a 
higher precision. You can measure to the nearest 0.5 mm.

The best estimate for the length of the red line in the figure at left is 2.35 cm. 
The actual length is closer to 2.35 cm than it is to either 2.30 cm or 2.40 cm.  
The measurement of 2.35 cm says the actual length is somewhere between 
2.325 cm and 2.375 cm.

The way to write this is:
The length of the red line = 2.35 ± 0.025 cm
The 0.025 represents the tolerance or uncertainty in the measurement.
In this case, with well-spaced millimetre lines, the tolerance is 1

4  of the 
smallest division. For a dense scale where measurement lines are close 
together, the tolerance would be 1

2 of the smallest division.
The reading on a digital scale is 8.94 grams. This means the mass is not 8.93 g 

nor 8.95 g. The actual mass is somewhere between 8.935 and 8.945 grams. The 
way to write this is:

The mass = 8.94 ± 0.005 g.
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Sample problem 13.1

Record the reading on the scales below, including the tolerance.

The scale shows 0.250 g, so the actual weight may be between 0.2495 g and 
0.2505 g. The mass is written as 0.250 ± 0.0005 g.

Revision question 13.3

(a) Determine the length of each line in the diagram below, showing the 
tolerance in each case. 

1

(i)

2 3 4 5 6 7 8 9 10 11 12

1

(ii)

2 3 4 5 6 7 8 9 10 11 12

1

(iii)

2 3 4 5 6 7 8 9 10 11 12

(b) Record the reading on the scales at left, including the tolerance.

Repeated measurements
Measurements of independent variables are usually precise and careful, so 
one measurement should be enough. However, measurements of the depen-
dent variables are often prone to some variation. 

Whether the variation is caused by the human reaction time when using 
a stopwatch, judging the rebound height of a basketball or in the case of 
the parachute, the unpredictable way the canopy will open each time, each 
reading may be different. So it is sensible to take several readings to obtain an 
average. You would expect that at least three measurements would be needed, 
and poss ibly five, but more than five is generally unnecessary.

Solution:

eLessons
Determining significant figures
eles-2559
Calculating error
eles-2560
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In some instances the variation between different readings will exceed the 
precision of the instrument. To determine which value you plot, you would use 
the average as well as the spread of the readings. For example, if your partner 
dropped the basketball from a height of 80.0  cm, and you judged the rebound 
height of the ball for five trials as: 68  cm, 69.5  cm, 68.5  cm, 68.5  cm and 69.5  cm. 
The average is 68.8  cm, which you would round to the nearest 0.5 cm because 
of the difficulty of judging a moving ball, giving an average of 69  cm. The full 
range of your measurements is from 68  cm to 69.5  cm, so your uncertainty 
would need to be 1  cm to cover the full range. This set of measurements would 
then be written as 69 ± 1  cm.

This format is useful in two ways: graphing and calculating.
When you graph your results, the number you will plot is 69  cm. To rep-

resent the ‘±1  cm’, you can draw a line through the point, up 1  cm and down 
1  cm, with a short line across the top and bottom of the line to make the ends 
evident.

0

2 4 6 8 10

5

10

y

xExample of error bars

Rather than graphing rebound height against drop height, it is more revealing 
of the physics of the situation to calculate and graph the ratio of the rebound 
height to drop height against drop height. The ratio is a measure of how much 
of the original gravitational potential energy is restored.

In this case the ratio would be 69
80.0

 = 0.8625, but how many digits are we 

entitled to use and how big should the error bar be? The first question is 
reasonably straightforward. The number of digits in your answer should equal 
the smallest number of digits in the data you used in the calculation. In this 
instance the average height has two digits, so the answer would be written 
as 0.86. You are not justified in including more digits because you don’t know 
the original data accurately enough.

Working out the size of an error bar takes more effort. If the two pieces of 
data are 69 ± 1  cm and 80.0  ± 0.3  cm, we can just add the uncertainties to 
get ±1.3  cm, but that doesn’t make sense when the calculated value is 0.86. 
Dividing the uncertainties would produce another unusual result.

The method used is to first express the uncertainty for each data value as a 
percentage. For example:

Percentage error of 69 ± 1  cm = 
1

69
⎛
⎝⎜

⎞
⎠⎟  × 100 = 1.4%

Percentage error of 80.0 ± 0.3  cm = 0.3
80

⎛
⎝⎜

⎞
⎠⎟

 × 100 = 0.4%
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Now add the two percentage errors together:

Total percentage error = 1.4% + 0.4% = 1.8%

Next use this total percentage error to find the error in the calculated 
answer.

Error =  0.86 × 1.8% = 0.016, which would be rounded to one digit as 0.02.

The full calculated answer would now be 0.86 ± 0.02.
The percentage errors are added together regardless of whether the data 

values are divided, multiplied, added or subtracted. For example:
Calculating speed using v = 

x

t

∆
∆

, the percentage errors of displacement and
time would be added together.
Calculating momentum using p = mv, the percentage errors of mass and 
velocity would be added together.
Calculating the change in momentum using Δp = pfinal − pinitial , the actual 
uncertainties of each are added together.

Finding patterns
Graphs are an effective way of summarising your data and looking for a 
physical relationship between the quantities you are investigating.

To present your data clearly, your graph should have the following features:
Each axis labelled with the physical quantity it represents. It is convention to 
put the independent variable on the x-axis and the dependent variable on 
the y-axis. You want to find out how ‘y’ depends on ‘x’. So, you might graph 
terminal velocity on the y-axis and mass on the x-axis.
A scale with the units displayed.
Include the origin, the zero value for the variables, on both axes. Sometimes 
the origin is a data point, even though you did not technically measure it. 
For example, if the drop height is zero, the rebound height would also be 
zero, and so the origin is a data point, but the energy lost cannot be deter-
mined and is not a data point. The inclusion of the origin on the axes makes 
any relationship more apparent. Truncating the values on either the y- or 
x-axis exaggerates the variation in the data, and may disguise any relation-
ship between the variables.
An error bar for each data point. Sometimes, given your scale, the error bars 
will be too small to be seen and so would not be worth including. If you are 
using Excel to generate your graphs, be careful when using the error bar 
facility. Correct usage is described below.

Drawing a line of best fit
A line of best fit summarises your graph. The line can 
be used to find the gradient of your graph and also a 
y-intercept.

The line of best fit doesn’t need to pass through each 
data point, although you should try to draw the line 
through each error bar if possible, but you may not be 
able to go through all of them. As a general rule, try to 
have as many data points above your line as you have 
below. Don’t assume your line must pass through the 
origin.

Of course, not all graphs can be summarised by a 
straight line. A gentle curve may be more appropriate, 
which can be analysed further.
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Graph showing a line of best fit
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Using Microsoft Excel
The Excel spreadsheet is a very useful tool to the experimenter. It can:

store your measurements. Make sure you save your data every few minutes 
and do a backup every day.
calculate any derived physical quantities, such as speed and acceleration 
of a parachute or the percentage of energy lost by a bouncing ball. The ‘Fill 
down’ command is a time saver.
be a powerful graphing tool, but it must be used wisely. Because you are look-
ing for a relationship between the variables, you must choose ‘X Y (Scatter)’ 
as your type of graph. This has the key scientific features of a proper scale and 
the presence of the origin. It is also preferable to choose a graph of uncon-
nected data points as your sub-type. You don’t want a line, straight or curved, 
going from data point to data point; some of your data points may be a touch 
out. A better choice is a ‘line of best fit’, which Excel can do for you.
generate a line of best fit. If you right-click on any data point, a window pops 
up with the option ‘Add Trendline’. This is the Excel command to create a line 
of best fit. Once selected, you have several choices. If your graph looks like a 
straight line, choose ‘Linear’. If the graph looks like a curve passing through 
the origin, choose ‘Power’. Students often think any curve is exponential, but 
unless the phenomenon involves growth or decay, it is very unlikely that a 
graph from a physics experiment would generate an exponential graph. 
create error bars. Excel can add in errors bars, but this is best avoided in 
most instances. It is likely that the size of your error bars will vary from data 
point to data point. Excel can’t handle that. It assigns a fixed-size error bar to 
each data point. Error bars can be added by clicking on any part of the chart 
and going to the ‘Layout’ tab. 
Note: These instructions may vary depending on the version of Excel you are 

using. 
Note: In the ‘Add Trendline’ window, you can select to display the equation 

of the line of best fit on your graph. Care needs to be shown with numbers in 
the equation. The numbers of digits may not be justified by your data. 

Other aspects of scientific 
measurement
For your investigation, the aspects of scientific measurement that are most 
important are the ones discussed earlier: precision and uncertainty.

Precision means recording a measurement to the greatest detail possible 
for that measuring instrument. The word ‘precision’ is being used in the same 
sense as a ‘precision tool’.

Uncertainty is acknowledging that no matter how precise an instrument 
might be there is a limit to that precision. The uncertainty is a range within 
which a measurement lies. An error bar is a way of representing that uncer-
tainty graphically.

Aspects of scientific measurement that are not likely to be relevant to your 
investigation are qualities such as accuracy, validity and reliability.

Accuracy: If an archer is accurate, their arrows hit close to the target. If you 
are conducting an experiment to measure the acceleration due to gravity, 
which has a known value, your accuracy as an experimenter can be deter-
mined. However, in your investigation, you are keen to understanding the 
physics of the situation by identifying relationships between the variable, 
rather than determining the value of a quantity that you can just as well look 
up in a textbook.

Validity applies more to Biology and Psychology, where precise measure-
ment is more difficult and there is the risk of bias on the part of the researcher. 
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In Physics and Chemistry, the variables are quantifiable and physically meas-
urable. If your experimental method clearly relates to the purpose of the inves-
tigation and you take care to be precise in your measurements and thorough in 
your analysis, your results should be valid and meaningful.

Reliability refers to whether another researcher could repeat your investi-
gation by following your method and obtain similar results. Obviously this 
cannot be determined by you or your teacher. However, the clarity and detail 
with which your experimental method is described will give the reader con-
fidence that your investigation is reproducible, which is the key to scientific 
success.

Handling difficulties
There will be times when:

your results show no pattern
your results aren’t what you expected
the equipment doesn’t work
you don’t know what to do next
you don’t understand the references you have been reading.

How you handle such problems is important.
Go back to basics. Check your logic, understanding and planning. Clarify the 
issue. Draw diagrams and concept maps if they help. Look for options. Go to 
a textbook.
Talk to other students or members of your family. Sometimes just talking 
through a situation can help you see a solution.
Seek help from your teacher.
Record in your logbook how you tackled the problem, what solution you 

found and where you got it from. This is good science and good management.

Safety
Part of the enjoyment of a practical investigation is that the topic may be 
unconventional or use an innovative method. Such situations, however, can 
present some risk, so special care needs to be taken to ensure yourself and 
others are safe.

Some simple rules to follow are:
Do the investigation as outlined in your approved plan. Don’t vary your plan 
without approval from your teacher.
Don’t do experimental work unsupervised unless you have prior approval 
from your teacher.
Investigations can take up more space than usual experiments, so be sensi-
tive to the needs of other students in the classroom.
When first setting up electrical experiments, ask your teacher to check the 
circuit.
Don’t interfere with the equipment set-up of others.

Presenting your work for assessment
It is likely that there will be three components that contribute to the assess-
ment of your investigation:
1. your initial research proposal
2. your logbook
3. your poster.

Your initial research proposal will have already been submitted and assessed. 
The poster will be only a summary of your investigation, the overall structure 
and the highlights; it is unlikely to be able to fit all your graphs, data analysis 
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and consideration of uncertainties. Your logbook will be an essential com-
plement to the poster for your teacher to get a full idea of what you have accom-
plished. It is therefore important that supplementary material is included and 
is easy to find.

The poster should have an obvious and logical structure. There is no one 
prescriptive format, but it should include the elements listed in table 13.2.

TABLE 13.2 Aspects of a written report

Section Description

Title A precise and complete description of what you 
investigated

Physics concepts 
and relationships

A short paragraph explaining the relevant concepts and 
relationships and how they apply to this investigation

Aim or purpose Why are you doing this investigation? What do you hope 
to find?

Procedure This is a major section. It describes what you measured, 
your selection of equipment and measuring instruments, 
and your step-by-step method. Include diagrams and 
photos. Refer to how you controlled variables; achieved the 
desired accuracy; and overcame, avoided or anticipated 
difficulties.

Observations and 
measurements

Include your data and graphs. If there is too much data, then 
refer to your logbook for the full set. Show how calculations 
were done using actual data. Also include illustrations of 
how uncertainties were calculated.

Analysis of results How does your data support your initial intentions? How 
much is your analysis limited by uncertainties? Identify 
strengths and weaknesses in the investigation, indicating how 
you would do it differently if you repeated it, and what your 
next steps in the investigation would be if you had more time.

Conclusion A short summary related to the initial purpose, summarising 
the meaning of your results

Presenting your work as a digital poster
The logbook would be read in depth by your teacher, who will often spend more 
than 20 minutes going through it in detail. A poster has a different intent and 
a different audience. The structure of your investigation should be apparent 
and give the viewer a good sense of the investigation within several minutes’ 
perusal.

A poster should address the sections outlined in table 13.2 without going 
into too much detail. For example, you would display only a subset of the 
data to convey your findings and accuracy. Similarly, not all your graphs need 
appear.

PowerPoint templates can assist with designing posters and make it much 
easier than putting together a hard copy on a large sheet of card. Check out 
the weblinks in your eBookPLUS for templates as well as examples of science 
posters.

Advice on assembling a poster
Layout

Set up a clearly visible structure for your poster.
Include a photo, diagram or graphs in each section, if possible.
Have a short title.
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Start with an engaging statement about the topic you investigated.
Give a quick overview of your approach, with images of experimental set-up 
and equipment used. A flow chart is an effective way of conveying your 
procedure.
Present results in graphical form with commentary; this will be the largest 
section of the poster.
Discuss your results with perceptive comments.
Decide on font size and line spacing to achieve the best impact for your 
poster.

Language
Restrict the text to 800–1000 words.
Adopt a more personal tone in the writing; use the active voice.
Avoid large blocks of text and long sentences.
Don’t plagiarise; if you must quote, then acknowledge your sources.
Use sentence case; that is, no all upper case sentences and avoid italicised 
sentences.
Use serif fonts, such as Times New Roman and Palatino.
Use italics for emphasis, rather than underlining or bold.
Check spelling and grammar as well as whether the correct word has been 
chosen, e.g. affect or effect, it’s or its etc.

Graphs
Avoid grid lines on graphs, they complicate the picture.
Ensure scales are readable.
Use informative titles to support the communication message of the poster.

Topics
Here are some sample topics to get you thinking. 

The sweet spot of a tennis racket
Bat (or club) and ball impacts
The changeover from sliding to rolling
Flight of a shuttlecock
Surface tension of a liquid
Performance of a parachute
Effect of spikes on running shoes
The performance of a CD hovercraft
The performance of a water-driven rocket
The impact force on and the energy lost by bouncing ball
Flight of a table tennis ball
The energy delivered by a catapult
Dry sand is soft, wet sand is hard, wetter sand is soft again: investigate
Factors affecting the design of a good paddle wheel
The physics of a bicep curl
The thrust of a propeller (in air or in water)
The drag on spheres in an airstream
The motion of spheres in a viscous medium
The effect of changing the size or shape of the wings of a glider
The flight of a magnus glider
Physics of the long jump
Effect of the blocks on a sprint start
Modelling the impact of the head with the dashboard in a car crash
Doing the ‘ollie’ on a skateboard
Electric force between charged plates
Magnetic force between two magnets

Digital doc
Investigation topics
doc-16176
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Strength of an electromagnet
Interaction between two glider-mounted magnets 
Efficiency of a DC motor
The performance of a homopolar motor
Efficiency of a DC motor used as a generator
Efficiency of a bicycle dynamo
The performance of a homopolar generator
Refractive index of a sugar solution
Patterns in stressed materials between crossed polaroids
Polarisation and optically active substances
Does the resolution of the eye depend on the illumination?
The resolution of a microscope
Measuring the thickness of a soap film by interference

Topics with catchy titles
Rolling can: A stoppered can is partially filled with water and is rolled down 
an incline. Investigate the motion.
Rocking bottle: Fill a bottle with some liquid. Lay it down on a horizontal sur-
face and give it a push. The bottle may first move forward and then oscillate 
before it comes to rest. Investigate the bottle’s motion. 
Water ski: What is the minimum speed needed to pull an object attached to 
a rope over a water surface so that it does not sink? Investigate the relevant 
parameters.
Bouncing ball: If you drop a table tennis ball, it bounces. The nature of the 
collision changes if the ball contains liquid. Investigate how the nature of the 
collision depends on the amount of liquid inside the ball and other relevant 
parameters. 
Popping body: A body is submerged in water. After release, it will pop out of 
the water. How does the height of the pop above the water surface depend on 
the various parameters?
Ionic motor: An electrolyte (an aqueous solution of a salt such as CuSO4 or 
NaCl) in a shallow tray is made to rotate in the field of a permanent magnet. 
An electric field is applied from a battery in such a way that one electrode is in 
the form of a conducting ring immersed in the electrolyte. The other electrode 
is the tip of a wire placed vertically in the centre of the ring. Study the phenom-
enon and find possible relationships between the variables. 

batterymagnet

+ –

An ionic motor

Magnetic brakes: When a strong magnet falls down through a non-ferrous 
tube, it experiences a retarding force. Investigate the phenomenon.
Transformers: The ‘simple transformer law’ relates output voltage to input 
voltage and turns ratio. Investigate the importance of frequency and other 
parameters in determining the non-ideal behaviour of transformers.
Magnetohydrodynamics: A shallow vessel contains a liquid. When an electric 
field and a magnetic field are applied, the liquid can start moving. Investigate 
this phenomenon.
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Vikings: According to a legend, Vikings were able to navigate in an ocean even 
during overcast weather using tourmaline crystals. Investigate whether it is 
possible to navigate using a polarising material. What is the accuracy of the 
method?
Photoelectric effect: When light shines on some metals, electrons are ejected 
with a range of energies. How does the distribution of electron energies vary 
with the intensity of the light and the frequency?

Brainstorming variables
Here are two topics with some variables identified. Complete the table for 
three others.

Topic

Independent variables
Dependent 
variablesContinuous Discrete

Bouncing 
basketball

       (i)  Drop height
   (ii)  Pressure of 

the ball

Surface ball lands 
on, ball type

Rebound height, 
impact time, 
energy loss, change 
in momentum, 
average force of 
impact

Efficiency of a DC 
motor

     (i)  Voltage drop 
across motor

   (ii)  Mass being 
raised

(iii)  Diameter of 
spindle

Type of DC motor Current through 
motor, time 
to travel fixed 
distance, power 
supplied, rate 
of gain of GPE, 
efficiency

(a)  Performance 
of a parachute

(b)  Electric force 
between 
charged plates

(c)  The optical 
activity 
of sugar 
solutions
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Chapter review

Questions
 1. Terry observes that when a droplet of water falls 

on a hot plate, it fizzes and shoots around the plate 
for some time. The droplet slowly gets smaller 
and finally disappears to nothing. Terry decides 
to investigate how long the droplet lasts, and how 
that might be affected by the temperature of the hot 
plate and the size of the droplet.

   The equipment used was a hot plate, several 
droppers and a stop watch. The time was measured 
three times for each eye dropper and for six 
different temperature settings. The middle reading 
of the three readings was plotted. The graphs are 
shown below.
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(a) In one sentence, describe the purpose of the 
investigation.

(b) List the variables in Terry’s investigation. 
For each variable, indicate whether it is an 
independent or dependent variable, and for 
each independent variable, indicate whether it 
is a continuous variable or a discrete variable. 
Give a reason for each answer.

(c) Suggest further data analysis. Include reasons.
(d) Write a conclusion for this investigation.
(e) A number of limitations may be identified in 

this investigation. Discuss these limitations 
and suggest some suitable improvements. 
Your discussion could address the following: 
selection of variables, experimental design, 
scientific method, data analysis, interpretation 
of results.

(f ) Suggest another independent variable.
(g) Suggest a method for estimating the size of a 

water droplet.
 2. Jackie decided to investigate an experiment found 

in the Amateur Scientist section of a very old 
edition of Scientific American.

   A large watch glass was placed on the cone of 
an upright loudspeaker. A small amount of water 
was added to the watch glass to a depth of a few 
mm. A signal generator was connected to the 
speaker, turned on and set at a high frequency. 
The water began to vibrate like a standing wave 
pattern. An eye dropper was then used to drop a 
water droplet onto the water surface. The droplet 
did not disappear into the water; instead, it moved 
around on the surface for some time before being 
absorbed.

   Write an experimental design for Jackie.
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To help in developing our basic understanding of our physical world, it is per-
haps reassuring to know that scientific conventions and mathematical prin-
ciples help us to express the concepts of physics precisely.

This skill checks appendix provides information on some of the conven-
tions used in physics and some of the mathematical skills used in solving 
problems. Areas covered are SI units, scientific notation, significant figures, 
finding the area under a graph, direct variation, using trigonometry, and using 
spreadsheets.

SI units
So that scientists all over the world can communicate with each other effec-
tively, it is important that they all use the same units to measure physical 
quantities. In 1960, the international authority on units agreed on a standard-
ised system called the International System of Units. They are called SI units 
from the French ‘Système International’.

Base units
SI units consist of seven defined base units and other derived units that are 
obtained by combining the base units.

TABLE A1.1 The SI base units

Quantity Unit Symbol*

Length metre m

Mass kilogram kg

Time second s

Electric current ampere A

Temperature kelvin K

Luminous intensity candela cd

Amount of substance mole mol

* Symbols that are named after people begin with a capital letter; note, however, that the full name of 
such a unit begins with a small letter.

Each base unit is defined by a standard that can be reproduced in laboratories 
throughout the world. The standards have changed over time to make them 
more accurate and reproducible. For example, in 1800, the standard metre was 
defined as one-ten-millionth of the distance from the Earth’s equator to either 
pole. By 1900, it had changed to the distance between two notches on a bar of 
platinum–iridium alloy kept in Paris. In 1960, it was redefined as 1  650  763.73 
wavelengths of the light emitted by the atoms of the gas krypton-86. In 
1983, the definition was changed to what it is today — the distance travelled

by light in a vacuum in 
1

299792458
 of a second.

Appendix 1 SKILL CHECKS
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The kilogram is defined by a standard mass of a platinum–iridium cylinder 
kept at the International Bureau of Weights and Measures in Paris since 1889.

The second is defined as the time taken for 9  192  631  770 vibrations of a 
caesium-133 atom.

Derived units
Speed is an example of a quantity that is measured in derived SI units. The 
SI unit of speed is the metre per second, written as m/s or m s−1. Table A1.2 
shows some other commonly used derived SI units.

TABLE A1.2 Some SI derived units commonly used in physics

Quantity Unit Symbol

Unit in 
 terms of 

other units

Force newton N kg m s−2

Energy and work joule J N m

Pressure pascal Pa N m−2

Power watt W J s−1

Electric charge coulomb C A s

Voltage volt V J C−1

Resistance ohm Ω V A−1

Radiation dose equivalent sievert Sv J kg−1

Units and negative indices
Derived units are often expressed with negative indices. For example, the unit 
of speed is usually expressed as m s−1 rather than m/s. This is because:

 1 m/s = 1 m × 
1
s

  = 1 m × 1 s−1

  = 1 m s−1.
Similarly, the unit of power, joule per second or J/s, is written as J s−1.
The unit of pressure, newtons per square metre, or N/m2, is written as N m−2 

because 1
m2

 = m−2.

Metric prefixes
Some SI units are too large or small for measuring some quantities. For 
example, it is not practical to measure the thickness of a human hair in metres. 
It is also inappropriate to measure the distance from Melbourne to Perth in 
metres. The prefixes used in front of SI units allow you to use more appropriate 
units such as millimetres or kilometres.

Revision question A1.1

(a) Write down the full name of each of the units listed in the example column 
of table A1.3.

(b) Express each of the following quantities in SI base units:
            (i) 1500 mA              (ii) 750 g  (iii) 250 GW
    (iv) 0.52 km                 (v) 600 nm   (vi) 150 µs
(vii) 5 cm   (viii) 50 MV   (ix) 12 dm
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(c) Acceleration is defined as the rate of change of velocity. Velocity has the 
same SI unit as speed. What is the SI unit of acceleration?

(d) The size of the gravitational force F on an object of mass m is given by the 
formula:
F = mg where g is the size of the gravitational field strength.
   (i) What is the SI unit of g?
(ii) Express the SI unit of g in terms of base SI units only.

TABLE A1.3 Commonly used metric prefixes

Prefix Symbol

Factor by  
which unit is 

multiplied Example

giga- G 109 GW

mega- M 106 MV

kilo- k 103 kJ

deci- d 10−1 dm

centi- c 10−2 cm

milli- m 10−3 mA

micro- µ 10−6 µg

nano- n 10−9 nm

Scientific notation
Very large and very small quantities can be more conveniently expressed in 
scientific notation. In scientific notation, a quantity is expressed as a number 
between 1 and 10 multiplied by a power of 10. For example, the average dis-
tance between the Earth and the moon is 380  000  000 m. This is more conven-
iently expressed as 3.8 × 108 m.

Using the power of 10 in scientific notation involves counting the number 
of places the decimal point in a number between 1 and 10 needs to be shifted 
to the right to obtain a multi-digit number. For example, the decimal point is 
shifted eight places to the right to get from 3.8 to 380  000  000. The latter number 
is therefore expressed as 3.8 × 108.

Scientific notation can also be used to express very small quantities 
 conveniently and concisely. To give one example, the mass of a proton is 

0.000  000  000  000  000  000  000  000  001  67 kg
In case you don’t feel like counting them, there are 26 zeros after 

the decimal point! In scientific notation, the mass of the proton can be 
expressed as 1.67 × 10−27 kg. The power of 10 is obtained by counting 
the number of places the decimal point in the number between 1 and 
10 is shifted to the left to obtain the small number. The expression 

1.67 × 10−27 means 
1.67
1027 .

In physics, scientific notation is generally used for numbers less than 0.01 
and greater than 1000.

Quantities in scientific notation can be entered into your calculator using 
the EXP button. For example, to enter 425  000  000  000, you would enter 
4.25 × 1011 as:

4.25 EXP 11.
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Revision question A1.2

Express the following quantities in scientific notation:
(a) the radius of the Earth, 637  000 m
(b) the speed of light in a vacuum, 300  000  000 m s−1

(c) the diameter of a typical atom, 0.000  000  000  3 m.

Significant figures
There is a degree of uncertainty in any physical measurement. The uncertainty 
can be due to human error or to the limitations of the measuring instrument.

Before 1964, when the first electronic quartz timing system was used in 
international events, stopwatches (accurate to the nearest 0.1 s) were used to 
measure running times. There was no point in having more accurate hand-held 
stopwatches because the timing was dependent on human judgement and 
reaction time, a minimum of about 0.1 s. Any measurement of running time by 
a hand-held timing device has an uncertainty of at least 0.2 s. The International 
Amateur Athletic Federation now requires that world record times in running 
events are measured to the nearest one-hundredth of a second.

In 1960, the women’s Olympic 100 m sprint was won by Wyomia Tyus (USA) 
in a time of 11.0 s. In 1984, the same event was won by Evelyn Ashford (USA) in 
a time of 10.97 s. The 1960 event was not timed electronically. The uncertainty 
of the measurement of time is indicated by the number of significant figures 
quoted.

The Wyomia Tyus time of 11.0 s has three significant figures. There would 
have been no point expressing the time as 11.00 because the nature of the 
timing device and human judgement and reaction time provide no degree of 
certainty in the second decimal place. The expression of the time as 11.0 s is 
consistent with the small degree of uncertainty in the last significant figure. To 
express the time as 11 s would suggest that the time was measured only to the 
nearest second.

The Evelyn Ashford time of 10.97 s has four significant figures. This is a 
reflection of the accuracy of the electronic timing devices and suggests that 
there could be a small degree of uncertainty in the last figure. The computer-
ised timing systems used today can measure times to the nearest 0.001 s. The 
last figure quoted in world records therefore has no degree of uncertainty of 
measurement.

In most physical measurements, the last significant figure shows a small 
degree of uncertainty. For example, the length of an Olympic competition 
swimming pool is correctly expressed as 50.00  m. The last zero has a small 
degree of uncertainty. A pool can still be used for Olympic competition if it is 
up to 3 cm too long.

Complicated by zeros
Two simple rules can be used to help you decide if zeros are significant.

Zeros before the decimal point are significant if they are between non-zero 
digits. For example, all of the zeros in the numbers 4506, 27  034 and 602  007 
are significant. The numbers therefore have four, five and six significant 
figures respectively. The zero in the number 0.56 is not significant.
Zeros after the decimal point are significant if they follow a non-zero digit. 
For example, in the number 28.00, the two zeros are significant. The number 
has four significant figures. However, in the number 0.0028, the two zeros 
are not significant. They do not follow a non-zero digit and are present only 
to indicate the position of the decimal point. This number therefore has only 
two significant figures. The number 0.002  80 has three significant figures.
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Sometimes, the number of significant figures in a measured quantity is not 
clear. For example, a length of 1500 m may have been measured to the nearest 
metre, the nearest 10 m or even the nearest 100 m. The two zeros are not 
between non-zero digits. The first rule given above, therefore, suggests that the 
length of 1500 m has only two significant figures. However, it could have two, 
three or four significant figures depending on how the length was measured. In 
order to avoid confusion, quantities such as this can be expressed in scientific 
notation. The length could then be expressed as 1.500 × 103 m, 1.50 × 103 m or 
1.5 × 103 m, giving an indication of the uncertainty.

When scientific notation appears clumsy, as it would for numbers such as 
100 or 10, it is generally assumed that the zeros are significant.

Calculating and significant figures
When quantities are multiplied or divided, the result should be expressed in 
the number of significant figures quoted in the least accurate quantity. For 
example, if you travelled a distance of 432 m in a car for 25 s, your average 
speed would be given by:

average speed
distance travelled

time taken
432 m

25 s
17.28 m s .1

=

=

= −

The result should be rounded off to two significant figures to reflect the 
uncertainty in the data used to determine the distance and time, and should 
be expressed as 17 m s−1.

When quantities are added or subtracted, the result should be expressed to 
the minimum number of decimal places used in the data. For example, if you 
travelled three consecutive distances of 63.5 m, 12.2517 m and 32.78 m, the 
total distance travelled would be given by:
 63.5 m
 + 12.2517 m
 + 32.78 m

 108.5317 m 

The result should be rounded off to one decimal place as the minimum 
number of decimal places used in the data is one in the distance of 63.5 m.

Revision question A1.3

(a) How many significant figures are quoted in each of the following quantities?
       (i) 566.2 kJ
    (ii) 0.000  32 m
(iii) 602.5 kg
  (iv) 42.5300 s
    (v) 5.6 × 103 W
 (vi) 0.008  40 V

(b) Calculate each of the following quantities and express them to the appro-
priate number of significant figures:
   (i) the area of a rectangular netball court that is 30.5 m long and 15.24 m wide
(ii) the perimeter of a soccer pitch that is measured to have a length of 

96.3 m and a width of 72.42 m.
(c) A Commonwealth Games athlete completes one lap of a circular track in a 

time of 46.52 s. The radius of the track is measured to be 64 m. What is the 
average speed of the athlete?
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Finding the area under a graph
There are several quantities related to forces and movement that need to be 
determined by calculating the area under a graph.

If the graph consists only of straight line sections, the task is simple. The area 
can be divided into triangles and rectangles. The areas of these shapes can be 
added together to determine the total area. The area under the graph in the 
figure below is found by adding areas P, Q, R, S and T.
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It is important to remember each area represents a quantity that has units. 
The unit of the area under the graph in the figure to the left is the metre because 
the quantities being multiplied to find the area are m s−1 and s.

m s−1 × s = m
Areas under graphs can have direction. The area under the curve in the 

figure, for the interval from 10 s to 14 s, represents a negative quantity. During 
this interval, the object is moving in a ‘reverse’ direction and its displacement 
(relative to the origin) is decreasing.

The area under the graph in the figure is equal to:
Area P + Area Q + Area R + Area S + Area T 

= 1
2  × 4 s × 6 m s−1 + 4 s × 6 m s−1 + × 2 s × 6 m s−1 
+ 1

2  × 2 s × −6 m s−1 + 2 s × −6 m s−1

= 12 m + 24 m + 6 m − 6 m − 12 m
= 24 m.

This area is equal to the displacement of the object during the 14 s time interval.
The figure below shows how the net force on a car changes with time. In this 

instance, the area under the curve cannot be divided into regular shapes like 
triangles and rectangles. The area under this curve (which has units of N s) can 
be estimated by one of the following methods:

counting the ‘squares’ between the curve and the horizontal axis. Find the area 
of each ‘square’ and multiply it by the number of squares. In the figure below, 
each small ‘square’ represents 25 N s. The number of squares under the graph 
is approximately 720. The area under the curve is thus estimated as 18  000 N s.
drawing a regular shape that has the same area as the area under the curve. 
The area of the regular shape can be found by dividing it into triangles and 
rectangles. You need to make sure that the regular shape includes as much 
extra area (E) as it leaves out (F) (see the figure on next page).
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Revision question A1.4

Determine the area under each of the following graphs.
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Direct variation
If one quantity is directly proportional to another, a change in one results 
in a change in the other by the same proportion. Consider, for example, the 
 relationship described by the equation y ∝ x. This type of relationship is known 
as a direct variation. The relationship can be written as:

y = kx where k is a constant of proportionality.
Thus,
 y1 = k x1

 and y2 = k x2

⇒ When y ∝ x,
y
y

x
x

y
y

x
x

 
k
k

  .

2

1

2

1

2

1

2

1

=

⇒ =

The ratio 
y
x  is constant. That is, if x is doubled, y doubles. If x is tripled, 

y triples. If x is halved, y halves.
Many relationships in physics involve direct variation or direct proportion. For 

example, the power, P, delivered to an electric appliance is directly proportional 
to the voltage, V, across it and the current, I, passing through it. In symbols:

P ∝ VI.
If either V or I are doubled, P changes in the same proportion — that is, it 

doubles. If both V and I are doubled, P changes by a factor of four.
The net force acting on an object is related to the object’s acceleration and 

mass by the equation:
Fnet = ma.
This is another example of direct variation. The net force is directly pro-

portional to the mass and acceleration of the object. In this case, the constant 
of proportionality is 1 and has no units.

When one quantity is directly proportional to the reciprocal of another, 
the relationship is defined as an inverse variation. For example, the electrical 
resistance R of a length of wire is directly proportional to the reciprocal of the 
cross-sectional area A of the wire. In symbols:

R ∝ 
A
1

 ⇒ R = 
A
k

 where k is a constant of proportionality.

R is said to be inversely proportional to A.

 If R1 = 
A
k

1

 and R2 = 
A
k

2then
 k = R1A1 = R2A2.
The product of R and A is constant. If A is doubled, R is halved. If A is tripled, 
R is divided by three. If A is halved, R doubles.

Revision question A1.5

(a) The power delivered to an electrical device is directly proportional to the 
voltage across the device and the electric current flowing through the 
device. If the power delivered to the device is initially 20 W, what will it be if:

             (i) the voltage is tripled
        (ii) the current is doubled
(iii) the voltage and electric current are both tripled
   (iv) the voltage is doubled and the current is halved?
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(b) The kinetic energy Ek of an object is directly proportional to the mass m of 
the object and the square of the speed v of the object. The formula for kin-
etic energy is:
E mv .k

1
2

2 ==
         (i)  What is the constant of proportionality in this example of direct 

variation?
    (ii)  If the speed of an object was tripled, by what factor would its kinetic 

energy change?
(iii)  If an object A has twice as much kinetic energy as an identical object B, 

what is the value of the following ratio:
speed of object A
speed of object B

?

(c) The density ρρ  of a substance is described by the equation:

ρρ  = 
m
V

 where m is the mass of the substance and V is its volume.

If a given mass of air with a density of 1.4 × 10−3 g cm−3 is compressed so 
that it occupies one-third of its original volume, what is its new density?

Using trigonometry
Trigonometric ratios can be used to find the 
sum or difference of vectors and to resolve 
vectors into components.

In the right-angled triangle ABC shown 
in the figure at right, the length of one side 
can be found if the lengths of the other 
two sides are known by using Pythagoras’s 
theorem. Thus:

c2 = a2 + b2.
Trigonometric ratios can be used to determine:
an angle if the lengths of any two sides are known
the length of an unknown side if one angle and the length of one other side 
are known.
In the right-angled triangle ABC:

 sin B = 
b
c

 sin A = 
a
c

 ⇒ b = c sin B ⇒ a = c sin A

 cos B = 
a
c

 cos A = 
b
c

 ⇒ a = c cos B ⇒ b = c cos A

 tan B = 
b
a

 tan A = 
a
b

Adding vectors
When vector quantities such as forces are added together, direction needs to 
be taken into account as well as magnitude. The labelled arrows that represent 
vectors can be used to perform the addition by placing them ‘head to tail’. When 
adding pairs of vectors, the labelled arrows are redrawn so that the ‘tail’ of the 
second arrow abuts the ‘head’ of the first arrow. The sum of the vectors is rep-
resented by the arrow drawn between the tail of the first vector and the head of 
the second. The diagrams on the following page illustrate how this method has 
been used to determine the net force in the three examples shown. The sum 
of the vectors (Fnet) is represented by the brown coloured arrow in each case.

C

A

Ba

c
b
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Fnet

(a)
40 N 30 N

Fnet

(b)
40 N

30 N

Fnet

(c)

30 N

40 N

N

S

W E

Determining the magnitude of a vector sum
The vectors in the diagrams above have been drawn to scale. That means 
that the length of the arrow representing the vector sum can be measured. 
The magnitude of the vector sum can then be calculated. The direction of the 
vector sum is given by the direction in which the third arrow points. If the vec-
tors have been drawn to scale, the direction can be determined by measuring 
the appropriate angle with a protractor.

The magnitude of the vector sum can also be determined by using 
Pythagoras’s theorem. The vector addition shown in example (c) above results 
in a right-angled triangle. The arrow representing the vector sum makes up the 
hypotenuse of a right-angled triangle, illustrated in the figure at left. The mag-
nitude that it represents is given by:

c2 = a2 + b2

 = (40)2 + (30)2

 = 2500 (calculating the sum of the squares of both sides)

 ⇒ c = 50 N. (taking the positive square root of the sum of the squares)

The direction of the net force can be found using trigonometric ratios.

 tan B = 
30
40

  = 0.75
 B = 37°

The vector sum, and net force, is 50 N at an angle of N53°E (53° clockwise 
from north).

You will get the same result no matter in which order you add the vectors.

Revision question A1.6

Find the sum of each of the pairs of vectors shown in (a) and (b) below.
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Subtracting vectors
One vector can be subtracted from another simply by adding its negative. This 
technique is used in the ‘As a matter of fact’ box on page 167. It works because 
subtracting a vector is the same as adding the 
negative vector (just as subtracting a positive 
number is the same as adding the negative of 
that number). Another way to subtract vectors 
is to place them tail to tail as in the figure on 
the right. The difference between the vectors a 
and b (b − a) is given by the vector that begins 
at the head of vector a and ends at the head of 
vector b.

Revision question A1.7

An ice-skater moving at 20 m s−1 turns right through an angle of 60° as shown in 
the figure on the left while maintaining the same speed. What is the magnitude 
of her change in velocity? 

Finding vector components
The magnitude of vector components can be 
determined using trigonometric ratios. The 
vector P in the figure at right can be resolved 
into vertical and horizontal components.

The magnitude of the horizontal com-
ponent, labelled PH, is given by:

 PH = P cos 40° (since cos 40° = 
P
P
H )

 ⇒ PH = 500 units × 0.7660
  = 383 units.

The magnitude of the vertical component, labelled as PV , is given by

 PV = P sin 40° (since sin 40° = 
P
P

V )
 ⇒ PV = 500 units × 0.6428
  = 321 units.

Revision question A1.8

Determine the magnitude of the horizontal component and vertical component 
of the vector Q in the figure on the left.

Adding three or more vectors
When three or more vectors are to be added together, they can be drawn to 
scale and placed ‘head to tail’ in any order. The sum of the vectors is repre-
sented by the arrow drawn between the tail of the first vector and the head of 
the last vector added.

Sample problem A1.1

In a three-way ‘tug of war’, three teams (A, B and C) pull horizontally away 
from the knot joining the ropes with forces of 3000 N north, 2500 N south-west 
and 2800 N south-east respectively. Determine the net horizontal force exerted 
on the knot.

a

b

b − a
b

a

initial
direction

final
direction

60°

500 units
PV

PH

P

40°

50
 u

ni
ts

Q

65°
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The figure below shows a diagram of the tug of war and two different ways of 
determining the net force on the knot. The order of adding the three vectors 
is not important as long as the magnitude and direction of each vector is not 
changed. The net force is 800 N in a direction 15° east of south.

135°

90°

135°

team A

team B team C

N

S

W E

A
3000 N A

3000 N

B
2500 N

B
2500 N

C
2800 N

C
2800 N

Fnet =  Fnet =  

Revision question A1.9

Determine the net force in each of the situations illustrated in (a) to (h).

(a)
3 N 2 N

(b)
3 N2 N

(c)

2 N

2 N

(d) 2 N 2 N

2 N

scale
1 cm = 1000 N

(e)

A

B

scale
1 cm = 100 N

(f)

A

B

C

D

scale
1 cm = 1000 N

(g)

A

B

not to scale

(h)

400 N

400 N

60°
60°

Solution:
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Revision question A1.10

In each of the illustrations below, the net force is shown along with all but one of 
the contributing forces. Use a vector diagram to determine the magnitude and 
direction of the missing force.

Fnet 

A

(a)

Fnet 

A

(b)
Fnet 

A

B

(c)

Fnet 

B
A

(d)
Fnet 

B

A

(e)

scale
1 cm = 100 N

Fnet = 0 

B

A

(f)
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Appendix 2 PERIODIC TABLE OF THE ELEMENTS

1
Hydrogen

H
1.0

2
Helium

He
4.0

3
Lithium

Li
6.9

4
Beryllium

Be
9.0

11
Sodium

Na
23.0

12
Magnesium

Mg
24.3

19
Potassium

K
39.1

20
Calcium

Ca
40.1

21
Scandium

Sc
45.0

22
Titanium

Ti
47.9

23
Vanadium

V
50.9

24
Chromium

Cr
52.0

25
Manganese

Mn
54.9

26
Iron
Fe

55.8

27
Cobalt

Co
58.9

37
Rubidium

Rb
85.5

38
Strontium

Sr
87.6

39
Yttrium

Y
88.9

40
Zirconium

Zr
91.2

41
Niobium

Nb
92.9

42
Molybdenum

Mo
96.0

43
Technetium

Tc
(98)

44
Ruthenium

Ru
101.1

45
Rhodium

Rh
102.9

55
Caesium

Cs
132.9

56
Barium

Ba
137.3

57–71
Lanthanoids

72
Hafnium

Hf
178.5

73
Tantalum

Ta
180.9

74
Tungsten

W
183.8

75
Rhenium

Re
186.2

76
Osmium

Os
190.2

77
Iridium

Ir
192.2

89
Actinium

Ac
(227)

90
Thorium

Th
232.0

91
Protactinium

Pa
231.0

92
Uranium

U
238.0

93
Neptunium

Np
(237)

94
Plutonium

Pu
(244)

87
Francium

Fr
(223)

88
Radium

Ra
(226)

89–103
Actinoids

104
Rutherfordium

Rf
(261)

105
Dubnium

Db
(262)

106
Seaborgium

Sg
(266)

107
Bohrium

Bh
(264)

108
Hassium

Hs
(267)

109
Meitnerium

Mt
(268)

Lanthanoids

Transition metals

Actinoids

Period 2
Period 1

Group 1 Group 2

Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Group 9
Period 3

Period 4

Period 5

Period 6

Period 7

Key
Atomic number
Name
Symbol
Relative atomic mass

Alkaline
earth metals

Alkali
metals

95
Americium

Am
(243)

57
Lanthanum

La
138.9

58
Cerium

Ce
140.1

59
Praseodymium

Pr
140.9

60
Neodymium

Nd
144.2

61
Promethium

Pm
(145)

62
Samarium

Sm
150.4

63
Europium

Eu
152.0
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Group 10 Group 11 Group 12

9
Fluorine

F
19.0

10
Neon
Ne

20.2

17
Chlorine

Cl
35.5

18
Argon

Ar
39.9

7
Nitrogen

N
14.0

8
Oxygen

O
16.0

15
Phosphorus

P
31.0

16
Sulfur

S
32.1

5
Boron

B
10.8

6
Carbon

C
12.0

13
Aluminium

Al
27.0

14
Silicon

Si
28.1

28
Nickel

Ni
58.7

29
Copper

Cu
63.5

30
Zinc
Zn

65.4

31
Gallium

Ga
69.7

32
Germanium

Ge
72.6

33
Arsenic

As
74.9

34
Selenium

Se
79.0

35
Bromine

Br
79.9

36
Krypton

Kr
83.8

46
Palladium

Pd
106.4

47
Silver

Ag
107.9

48
Cadmium

Cd
112.4

49
Indium

In
114.8

50
Tin
Sn

118.7

51
Antimony

Sb
121.8

52
Tellurium

Te
127.6

53
Iodine

I
126.9

54
Xenon

Xe
131.3

78
Platinum

Pt
195.1

110
Darmstadtium

Ds
(271)

111
Roentgenium

Rg
(272)

79
Gold
Au

197.0

80
Mercury

Hg
200.6

81
Thallium

Tl
204.4

82
Lead
Pb

207.2

114
Flerovium

Fl
(289)

83
Bismuth

Bi
209.0

84
Polonium

Po
(210)

116
Livermorium

Lv
(292)

85
Astatine

At
(210)

86
Radon

Rn
(222)

96
Curium

Cm
(247)

97
Berkelium

Bk
(247)

98
Californium

Cf
(251)

99
Einsteinium

Es
(252)

100
Fermium

Fm
(257)

101
Mendelevium

Md
(258)

102
Nobelium

No
(259)

103
Lawrencium

Lr
(262)

Group 13 Group 14 Group 15 Group 16 Group 17 Group 18

Metals

Halogens
Non-metals

Noble gases

112
Copernicium

Cn
(285)

64
Gadolinium

Gd
157.3

65
Terbium

Tb
158.9

66
Dysprosium

Dy
162.5

67
Holmium

Ho
164.9

68
Erbium

Er
167.3

69
Thulium

Tm
168.9

70
Ytterbium

Yb
173.1

71
Lutetium

Lu
175.0
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Appendix 3 SOME USEFUL ASTRONOMICAL DATA

Mean 
radius of 
orbit (au)

Mean 
radius of 
orbit (km)

Orbital 
period 
(years)

Equatorial 
radius (km) Mass (kg)

Sun 6.96 × 105 1.99 × 1030

Mercury  0.387 5.79 × 107  0.241 2.44 × 103 3.30 × 1023

Venus  0.723 1.08 × 108  0.615 6.05 × 103 4.87 × 1024

Earth  1.00 1.50 × 108  1.00 6.37 × 103 5.97 × 1024

Moon  2.57 × 10−3 3.84 × 105  27.32 days 1.74 × 103 7.35 × 1022

Mars  1.52 2.28 × 108  1.88 3.40 × 103 6.42 × 1023

Jupiter  5.20 7.78 × 108  11.9 7.15 × 104 1.90 × 1027

Saturn  9.58 1.43 × 109  29.7 6.03 × 104 5.68 × 1026

Titan  8.20 × 10−3 1.22 × 106  15.9 days 2.58 × 103 1.35 × 1023

Uranus 19.2 2.87 × 109  84.6 2.59 × 104 8.68 × 1025

Neptune 30.1 4.50 × 109 166 2.48 × 104 1.02 × 1026

Pluto* 39.48 5.91 × 109 248 1.18 × 103 1.46 × 1022

*Pluto is no longer classified as a planet. Scientists have recently hypothesised that a ninth 
planet may exist, but it has not yet been directly observed.

Alpha Centauri 4.37 light-years away

The Milky Way 1.50 × 105 light-years across

Andromeda 2.30 × 106 light-years away

Edge of observable universe 4.65 × 1010 light-years away

Source: Data derived from www.jpl.nasa.gov
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Appendix 4 USEFUL FORMULAE

Velocity; acceleration v
x
t

= ∆
∆

; a
v
t

= ∆
∆

Equations for constant acceleration

v u at= +

= +s ut at
1
2

2

= +v u as22 2

)(= +s v u t
1
2

Newton’s Second Law of Motion F maΣ =

Circular motion = = π
a

v
r

r
T

42 2

2

Hooke’s Law = − ∆F xk

Elastic potential energy = ∆E x
1
2

k( )ep
2

Kinetic energy E mv
1
2k

2=

Newton’s Law of Universal Gravitation F
M M

r
G 1 2

2
=

Gravitational field strength g
M

r
G

2
=

Universal gravitational constant = × − −G 6.67 10 N m kg11 2 2

Mass of Earth = ×M 5.98 10 kgE
24

Radius of Earth = ×R 6.37 10 mE
6

Gravitational potential energy near the  
Earth’s surface

E mghgp =

Acceleration due to gravity at the  
Earth’s surface

= − −g 9.8ms 2

Voltage; power V RI= ; P VI I R2= =

Resistors in series R R RT 1 2= +



364 Appendices

Resistors in parallel
R R R
1 1 1

T 1 2
= +

Transformer action
V
V

N
N

1

2

1

2
=

Time constant for an RC circuit RCτ =

AC voltage and current V V
1
2

rms peak= ; I I
1
2

rms peak=

Magnetic force F IlB=

Electromagnetic induction emf: 
N

t
ε = − ∆Φ

∆
; flux BAΦ =

Transmission losses V I Rdrop line line= ; =P I Rloss line line
2

Mass of an electron = × −m 9.1 10 kge
31

Charge of an electron e 1.6 10 C19= − × −

Planck’s constant
= ×
= ×

−

−

h 6.63 10 Js

4.14 10 eV s

34

15

Speed of light = × −c 3.0 10 ms8 1

Photoelectric effect E f Whkmax = −

Photon energy E fh=

Photon momentum p
h
λ

=

De Broglie wavelength
p
hλ =

Speed, frequency and wavelength v f λ=

Energy transformation for electrons in  
an electron gun (< 100 keV)

=v V
1
2

m ee
2

Radius of electron path in a magnetic field =r
v

B
m
e

e

Magnetic force on a moving electron F vBe=

Bragg’s Law n d2 sinλ θ=

Electric field between charged plates E
V
d

=
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Band gap energy E
hc
λ

=

Snell’s law n nsin sin1 1 2 2θ θ=

Sound intensity level (in dB)
L

I
I

(dB) 10log10
0

=
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

where = × − −I 1.0 10 W m0
12 2

Lorentz factor v

1

1
c

2

2

γ =
−

Time dilation t t0γ=

Length contraction
l

L0

γ
=

Relativistic mass m m0γ=

Total energy E E E mctotal k rest
2= + =

Prefixes and units
p = pico- = 10−12

n = nano- = 10−9

μ = micro- = 10−6

m = milli- = 10−3

k = kilo- = 103

M = mega- = 106

G = giga- = 109

t = tonne = 103 kg

Appendix 4
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A
absolute refractive index: the relative refractive 

index for light travelling from a vacuum into 
the substance. It is commonly referred to as the 
refractive index.

absorption spectrum: a spectrum produced when 
light passes through a cool gas. It includes a series 
of dark lines that correspond to the frequencies of 
light absorbed by the gas.

acceleration: the rate of change of velocity. It is a 
vector quantity.

air resistance: the force applied to an object, opposite 
to its direction of motion, by the air through which 
it is moving

alternating current: an electric current that reverses 
direction at short, regular intervals

amplitude: the amplitude of a wave is the size of the 
maximum disturbance of the medium from its 
normal state.

angle of incidence: the angle between an incident ray 
and the normal

angle of reflection: the angle between a reflected ray 
and the normal

angle of refraction: the angle between a refracted ray 
and the normal

antinodal lines: lines where constructive interference 
occurs on a surface

antinode: a point at which constructive interference 
takes place

B
black body: an ideal absorber of energy. It absorbs all 

electromagnetic radiation that falls on it and does 
not reflect any.

C
cathode ray: a stream of electrons emitted between a 

cathode (negative electrode) and an anode (positive 
electrode) in an evacuated tube

centre of mass: the point at which all of the mass of an 
object can be considered to be when modelling the 
external forces acting on the object

centripetal acceleration: the centre-directed 
acceleration of an object moving in a circle

coherent: two waves are coherent if there is a constant 
relative phase between them.

commutator: a device that reverses the direction of 
the current flowing through an electric circuit

compression: a region of increased pressure in a 
medium during the transmission of a sound wave

constructive interference: the addition of two wave 
disturbances to give an amplitude that is greater 
than either of the two waves

continuous spectrum: a spectrum that has no gaps. 
There are no frequencies or wavelengths missing 
from the spectrum.

critical angle: the angle of incidence for which the 
angle of refraction is 90°. The critical angle exists 
only when light passes from one substance into a 
second substance with a lower refractive index.

D
de Broglie wavelength: the wavelength associated 

with a particle or discrete piece of matter
destructive interference: the addition of two wave 

disturbances to give an amplitude that is less than 
either of the two waves

diffraction: the spreading out, or bending of, waves as 
they pass through a small opening or move past the 
edge of an object

diffuse reflection: reflection from a rough or irregular 
surface

direct current: an electric current that flows in one 
direction only

dispersion: the separation of light into different 
colours as a result of refraction

displacement: a measure of the change in position of 
an object. It is a vector quantity.

distance: a measure of the length of the path taken when 
an object changes position. It is a scalar quantity.

E
eddy current: an electric current induced in the 

iron core of a transformer. Eddy currents result in 
undesirable energy losses from the transformer.

elastic collision: a collision in which the total kinetic 
energy is conserved

electromagnet: a temporary magnet produced when 
a solenoid wound around an iron core carries an 
electric current

electromagnetic induction: the generation of an 
electric current in a coil as a result of a changing 

Glossary
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magnetic field or as a result of the movement of the 
coil within a constant magnetic field

electron gun: a device to provide free electrons for a 
linear accelerator. It usually consists of a hot wire 
filament with a current supplied by a low-voltage 
source.

electron volt: the quantity of energy acquired by an 
elementary charge (qe = 1.6 × 10−19  C) passing 
through a potential difference of 1  V. Thus, 
1.6 × 10−19  J = 1  eV.

emf: a source of voltage that can cause an electric 
current to flow

emission spectrum: a spectrum produced when light 
is emitted from an excited gas and passed through a 
spectrometer. It includes a series of bright lines on a 
dark background. The bright lines correspond to the 
frequencies of light emitted by the gas.

excited state: a state in which an electron has more 
energy than its ground state

F
fluorescent: describes the light emitted from materials 

as a result of exposure to external radiation.
frequency: the frequency of a periodic wave is the 

number of times that it repeats itself every second.

G
galvanometer: an instrument used to detect small 

electric currents
generator: a device in which a rotating coil in a 

magnetic field is used to produce a voltage
geostationary: a satellite in geostationary orbit is 

stationary relative to a point directly below it on 
Earth’s surface. A geostationary orbit has the same 
period as the rotation of Earth.

gravitational potential energy: the energy stored in 
an object as a result of its position relative to another 
object to which it is attracted by the force of gravity

ground state: a state of an electron in which it has the 
least possible amount of energy

I
impulse: the product of a force and the time interval 

over which it acts. Impulse is a vector quantity with 
SI units of N s.

incandescent: describes luminous objects that 
produce light as a result of being hot

induced voltage: a voltage that is caused by the 
separation of charge due to the presence of a 
magnetic field

induction: the process of producing magnetic 
properties in one object due to the presence of 
another object with magnetic properties

inertial reference frames: reference frames that are 
not accelerating

instantaneous speed: the speed at a particular instant 
of time

instantaneous velocity: the velocity at a particular 
instant of time

invariant: describes a quantity that has the same value 
in all reference frames

ionisation energy: the amount of energy required to 
be transferred to an electron to enable it to escape 
from a material

isolated system: a system on which no external forces 
act. The only forces acting on objects in the system 
are those applied by other objects in the system.

K
kinetic energy: the energy associated with the 

movement of an object. Like all forms of energy, 
kinetic energy is a scalar quantity.

L
light-emitting diode (LED): a small semiconductor 

diode that emits light when a current passes 
through it

line emission spectrum: a spectrum that shows the 
discrete frequencies or wavelengths produced by an 
excited material

longitudinal waves: waves for which the disturbance 
is parallel to the direction of propagation

luminous: describes objects that give off their own 
light

M
magnetic field: the property of the space around 

a magnet that causes an object in that space to 
experience a force due only to the presence of the 
magnet

magnetic flux: a measure of the amount of magnetic 
field passing through an area. It is measured in 
webers (Wb).

mass–energy: as mass and energy are equivalent, 
they can be described as a single concept, mass–
energy. The mass–energy of an object is given by 
E = mc 2.

momentum: the product of the mass of an object and 
its velocity. Momentum is a vector quantity.

monochromatic: describes light of a single frequency 
and, hence, very clearly defined colour

N
nanocrystal: a very small crystal with only a few 

hundred to a thousand atoms
net force: the vector sum of all the forces acting on an 

object
nodal lines: lines where destructive interference 

occurs on a surface, resulting in no displacement of 
the surface

node: a point at which destructive interference takes 
place

normal: a line that is perpendicular to a surface or a 
boundary between two surfaces
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O
optical fibre: a thin tube of transparent material that 

allows light to pass through without being refracted 
into the air or another external medium

P
path difference: the difference between the lengths of 

the paths from each of two sources of waves to a point
peak current: the amplitude of an alternating current
peak-to-peak voltage: the difference between the 

maximum and minimum voltages of a DC voltage
peak voltage: the amplitude of an alternating voltage
periodic waves: disturbances that repeat themselves 

at regular intervals
period (circular motion): the time taken for a 

complete revolution of a repeated circular motion
period (wave motion): the time it takes a source to 

produce a complete wave. This is the same as the 
time taken for a complete wave to pass a given 
point.

photoelectric effect: the release of electrons 
from a metal surface as a result of exposure to 
electromagnetic radiation

photon: a discrete bundle of electromagnetic 
radiation. Photons can be thought of as discrete 
packets of light energy with zero mass and zero 
electric charge.

p–n junction: the border region between p-type and 
n-type materials that have been fused together

polarisation: the blocking of transverse waves except 
for those travelling in a single plane

power rating: the power rating, or wattage, of an 
electrical appliance indicates the rate at which it 
uses electrical energy.

proper length: the length of an object measured in its 
rest frame

proper time: the time measured in a frame of 
reference where the events occur at the same point 
in space. The proper time of a clock is the time the 
clock measures in its own reference frame.

Q
quantised: describes quantities that cannot be divided 

or broken up into smaller parts
quantum: a small quantity of a fixed amount

R
rarefaction: a region of reduced pressure in a medium 

during the transmission of a sound wave
ray: a very narrow pencil-like beam of light
refraction: the bending of light as it passes from one 

medium into another
regular reflection: also referred to as specular 

reflection; reflection from a smooth surface
relative: describes a quantity that has different values 

for different observers

relative refractive index: a measure of how much 
light bends when it travels from any one substance 
into any other substance

resonance: the condition where a medium responds 
to a periodic external force by vibrating with the 
same frequency as the force

rest mass: the mass of an object measured at rest
restoring force: the force applied by a spring to resist 

compression or extension
RMS voltage: root mean square voltage, the value 

of the constant DC voltage that would produce 
the same power as AC voltage across the same 
resistance

road friction: the force applied by the road surface to 
the wheels of a vehicle in a direction opposite to the 
direction of motion of the vehicle

S
scalar quantity: a quantity that has magnitude (size) 

but not direction
semiconductor: a material that has a resistivity 

between that of conductors and insulators
solenoid: a coil of wire wound into a cylindrical shape
spectrometer: a device used to disperse light into its 

spectrum
specular reflection: see regular reflection
speed: a measure of the time rate at which an object 

moves over a distance
standing wave: the superposition of two wave trains 

with the same frequency and amplitude travelling 
in opposite directions. Standing waves are also 
referred to as stationary waves because they do 
not appear to move through the medium. The 
positions of no disturbance (a node) and maximum 
disturbance (an antinode) remain fixed.

step-down transformer: a transformer that produces 
an output (secondary) voltage that is less than the 
input (primary) voltage

step-up transformer: a transformer that produces an 
output (secondary) voltage that is greater than the 
input (primary) voltage

strain potential energy: the energy stored in an 
object as a result of a reversible change in shape

superposition: the adding together of amplitudes of 
two or more waves passing through the same point

T
terminal velocity: the constant velocity reached by 

a falling object when the upwards air resistance 
becomes equal to the downward force of gravity

thermal spectrum: the spectrum produced by a body 
due to its temperature

thought experiments: also known as gedanken 
experiments; imaginary scenarios designed to 
explore what the laws of physics predict would 
happen
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time dilation: the slowing of time by clocks moving 
relative to the observer

torque: the turning effect of a force
total internal reflection: the total reflection of light from 

a boundary between two substances. It occurs when 
the angle of incidence is greater than the critical angle.

transformer: a device in which two multi-turn coils 
are wound around an iron core. One coil acts as an 
input while the other acts as an output. The purpose 
of the transformer is to produce an output AC 
voltage that is different from the input AC voltage.

transverse waves: waves for which the disturbance is 
at right angles to the direction of propagation

V
vector quantity: a quantity that has direction as well 

as magnitude (size)
velocity: a measure of the time rate of displacement, 

or the time rate of changing position. It is a vector 
quantity.

W
wave: a transfer of energy through a medium without 

any net movement of matter
wavelength: the distance between successive 

corresponding parts of a periodic wave
wave–particle duality: describes light as having 

characteristics of both waves and particles. This 
duality means that neither the wave model nor the 
particle model adequately explains the properties of 
light on its own.

work function: the minimum energy required to 
release an electron from the surface of a material

work: the energy transferred to or from another 
object by the action of a force. Work is a scalar 
quantity.

X
X-ray: a form of electromagnetic radiation with a 

frequency above that of ultraviolet radiation
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Chapter 1 
Page 5
 1.1 (a) 3.0 m s−2

     (b) 7.1 m s−2, south-west direction
     (c)  7.1 m s−2, direction S61°E

Page 8
 1.2 (a) 3.0 m s−2 south
     (b) −5.0 m s−2 north
     (c)   8.3 m s−1 south

Page 10
 1.3 (a) 30 m s−1

     (b) 0.625 m s−2

     (c) 25 m s−1

     (d)   (i)  21.25 m s−1, rounded to 21 m s−1

     (ii) 25 m s−1

Page 14
 1.4 (a)     (i)  500 N
       (ii) 100 N
     (b)     (i) 1200 N
       (ii) 1300 N
     (iii) 4500 N

Page 18
 1.5 (a)   (i) 248 N, rounded to 250 N
     (ii) 852 N, rounded to 850 N
     (b) 1.98 m s−2, rounded to 2.0 m s−2

Page 19
 1.6 (a) 44 m
     (b) 29.4 m s−1, rounded to 29 m s−1

Page 22
 1.7 (a) 76.4 m, rounded to 76 m
     (b) 160 m
     (c) 39.2 m s−1, rounded to 39 m s−1

     (d) 44.4°, rounded to 44°
Page 24
 1.8 (a)  3.13 m s−1, rounded to 3.1 m s−1

     (b) 0.638 = 0.64 s

Page 27
 1.9 (a) 13.52 km h−1, rounded to 14 km h−1

     (b) 0.767 s, rounded to 0.77 s
     (c) 6.18 m

Page 29
1.10 (a) 3.1 m
    (b) 1.3 m s−1

    (c) 0.828 m s−1, rounded to 0.83 m s−1

    (d) 0 m s−1

Page 33
1.11 (a) 22 m s−2

    (b) 1326 N, rounded to 1300 N

Page 36
1.12 13.3 m s−1

Page 37
1.13 (a)  61°
    (b) 1011 N, rounded to 1000 N

Page 38
1.14 (a)  1127 N, rounded to 1100 N
    (b) 1715 N, rounded to 1700 N
    (c)   2.9, almost three times the weight force

Page 39
1.15 (a) 2507 N, rounded to 2500 N
    (b) 4.849 m s−1, rounded to 4.8 m s−1

Review questions
 1. 3.5 m s−1

 2. 10 m s−1 down
 3. (a) 25 km h−1 s−1 S 37° E
 (b) 6.9 m s−2 S 37° E
 7. (a) F   (b) C   (c) X
 8. (a) 40 N   (b) 10 N   (c) 34 N
10. (a) 3.5 m s−2 opposite to the direction of motion
 (b) 7.0 × 103 N
11. (a) 200 m  (b) 14 m s−1  (c) 24  000 N  (d) 32 000 N
12. (b) 1.4 × 104 N  (c) Zero  (d) 5.1 × 103 N
13. (a) No direction as the net force is zero
 (b) 300 N
14. (a) 380 N north
 (b) 1.7 × 103 N north
15. 1000 N
16. 8.5°
20. (a) Vertical equals 15 m s−1, horizontal equals 13 m s−1

 (b) 10 m s−1, 4.3 m s−1

 (c) 5 m s−1, zero
 (d) Zero, 10 km h−1

 (e) 17 m s−1, 29 m s−1

24. (a) 5.5 s (b) 55 m s−1

25. (a) 3.6 s (b) 16 m
26. (a) 14 m s−1 (b) 1.4 s  (c) 0.7 m
 (d) 14 m s−1, 88° down from the horizontal
 (e) (i) 0 N  (ii) 5000 N downwards
27. (b) 28 m s−1  (c) 0.041 m
28. No, as the range is only 4.9 m.
29. 45°
30. (a) 4.8 m s−1  (b) 18°  (c) 0.12 m
31. (a) 0.69 s
 (b) Vertical equals 2.4 m, horizontal equals 4.8 m
 (c) 0.32 s

Answers to 
numerical questions

Digital documents
Fully worked solutions and answers to all questions can 
be found in the Resources section of your eBookPLUS.
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32. (a) 0.80 s
 (b) Vertical equals 3.2 m, horizontal equals 9.1 m
 (c) 0.90 s (d) 19 m
33. (a) 18 m (b) 15 m s−1 at 37° to the horizontal
34. 5.5 m s−1

35. 19°
36. (a) 0.024 m s−2 towards the centre of the circle
 (b) 1.6 N towards the centre of the circle
37. Lucy
38. (a) 0.050 m s−2 towards the centre of the circle
 (b) 1.7 N towards the centre of the circle
 (c) 75 N towards the centre of the circle
39. (a) 0.95 m s−2 towards the centre of the circle
 (b) 0.11 N towards the centre of the circle
42. (a) 11.7 m s−1

 (b) 92.0 m s−2 towards the centre of the circle
 (c) 4.60 N towards the centre of the circle
 (d) 4.60 N towards the centre of the circle
 (e) 4.63 N
43. (a) 12 N (11.8 N)
 (b) 11 m s−1 (10.9 m s−1)
 (c) 1.2 s
44. (a) 350 N towards the centre of the circle
 (b) 350 N towards the centre of the circle
 (c) It will increase to 5.0 m.
45. 78.9 kg
46. 82° (i.e. banking alone is not the solution)
47. (b) (i) 8000 N downwards  (ii) 6.3 m s−1

48. (a) 4.5 m s−1  (b) 3.3 × 102 N upwards

Chapter 2
Page 49
2.1 (a) 2000 N s east
    (b) 2500 N
    (c)  2500 N

Page 50
2.2 4.5 m s−1

Page 54
2.3 (a) 10 m s−1

    (b) 20 000 N s
    (c)  20 000 N s
    (d) 6.0 m s−1

Page 56
2.4 (a) 8.0 × 104 J
   (b) 4000 N

Page 58
2.5 (a) 14 700 J, rounded to 1.5 × 104 J
    (b) 22 m s−1

Page 59
2.6 (a) 1.94 J
    (b) 25 cm

Page 61
2.7 (a) 100 N m−1

    (b) 4.0 J
2.8 (a) 0.128 J, rounded to 0.13 J
    (b) 0.051 m = 5.1 cm

Page 66
2.9 (a)   (i)  −0.25 m s−1 , which means the green car goes 

backwards.
    (ii) −1.0 m s−1

    (b) Both collisions are inelastic.

Review questions
 5. (a) 2.0 m s−1 south  (c) 2.0 m s−1 south
 6. (a) 140 kg m s−1 east
 (b) Between Dean and Melita, 2.5 m from Dean
 (c) 1.2 m s−1 east
 (d) 1.2 m s−1 east
 (e) 60 N s east
 7. (a) 2.9 m s−1 east  (b) 3.4 × 104 N s west
 9. (a) 1.8 × 105 J  (b) 1.8 × 105 J  (c) 4.5 × 105 N
11. (a) 9.7 × 103 J  (b) 1.4 × 104 N  (c) approx. 2 × 106 N
12. (a) 4100 J  (b) 5500 J  (c) 3.1 × 105 J
13 (a) 4–5 × 105 J  (b) 800–1000 J  (c) 15–30 J
 (d) 1.5–3.0 J  (e) 0.5–1.0 J
14. (a) 10 N up  (b) 38 N m−1  (c) A  (d) 1.3 J  (e) B
15. (a) 3.5 × 106 J  (b) 3.5 × 106 J
16. (b) 1.8 × 103 J  (c) 1.8 × 103 J
17. (a) 10  000  (b) 10  000  (c) 1
18. (a) 7500 J  (b) 16 m s−1  (c) None  (d) 238 N
19. (a) 2.5 J  (b) 1.4 m s−1  (c) 220 N m−1

20. (a) 7.7 mm  (b) 900 J  (c) 2.0 m s−1

21. (b) 67 N m−1  (c) 100 N m−1

24. (a) 30 m s−1 east  (b) 0.038 (approx. 1
26

)
25. (a) Zero (b) Each vehicle has a final speed of 60 km h−1.
26. (a) 1.8 × 104 J      (b) 2.9 × 104 J
27. (a) 0.30 m s−1 north  (b) 75%
29. (a) 5.4 N opposite to the original direction of motion
 (b) 0.54 N s opposite to the original direction of motion
31. (a) 60 kg m s−1  (b) 90 kg m s−1

33. (a)      (i) −980 N s  (ii) −980 N s  (iii) −196 m s−2

  (iv) −3920 m s−2

 (b) Driver 19.6 g s; passenger head 392 g s

Chapter 3
Page 77
3.1 B

Page 89
3.7 4.329 min

Page 90
3.8 1 min 48 s
3.9 0.866c

Page 97
3.11 (a) 1934 m
    (b) 209 m

Page 99
3.12 3 × 1016 kg

Page 101

3.13 
3
4

c

Review questions
 6. 100 km h−1 towards the front of each car.
 9. (a) 10 km h−1 s−1  (b) 10 km h−1 s−1

15. c
25. (a) 1.048  28
 (b) 95.4 beats per minute (it beats more slowly.)
26. (a) Unchanged
 (b) It would be contracted to 60% of its proper length.
 (c) c
27. (a) 2.82 s  (b) 0.7053 m
28. (a) 5 min  (b)  0.78c
29. (a) 3.0 light-years
 (b) 4.3 years
 (c) 6 years
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30. (a) 57 m  (b) 190 m  (c) 6.3 × 10−7 s 
 (d) 2.67 × 10−7 s
31. 43.6 m 
33. 5.97 km
34. 7.839 microseconds
37. (a) 4.5 × 1017 J
 (b) 1.4 × 1019 J
 (c) 6.0 × 1019 J
 (d) 1.2 × 1020 J
40. A
42. (a) 117 kg
 (b)  4.2 × 1018 J
43. 5.4 × 1044 J
44. 2.99 × 1018 kg
45. 2.3 × 1020 J
46. 1.0 × 104 m s–1

47. 2.25 × 1016 J
51. 8.18 × 10–31 kg

Chapter 4
Page 110
4.1 Earth: 3.38 × 1018 m3 s−2

 Mercury: 3.36 × 1018 m3 s−2

 Venus: 3.35 × 1018 m3 s−2

 Mars: 3.36 × 1018 m3 s−2

 Jupiter: 3.37 × 1018 m3 s−2

 Saturn: 3.38 × 1018 m3 s−2

 Uranus: 3.37 × 1018 m3 s−2

 Neptune: 3.37 × 1018 m3 s−2

 Pluto: 3.36 × 1018 m3 s−2

Page 111
4.2 (a) 1.98 × 1020 N
 (b) 1.98 × 1020 N

Page 113
4.3 1.99 × 1030 kg

Page 116
4.5 (a) gMoon = 1.619 N kg−1, rounded to 1.6 N kg−1:
  1.619 × 6 = 9.7, which is close to 9.8 N kg−1.
 (b) Jupiter, 24.7 N kg−1

Page 120
4.6 (b)  Number of little squares = 3.6 × 1014 J, just under 

three times
Review questions
 1. (a) 97 N downwards  (b) 97 N  (c) 6.41 × 106 m
 2. (a) (i) 9.80 N kg −1  (ii) 6.9 × 102 N
 (b) (i) 3.70 N kg −1  (ii) 2.6 × 102 N
 (c) (i) 8.87 N kg −1  (ii) 6.2 × 102 N
 (d) (i) 0.667 N kg −1 (ii) 47 N
 3. 1.6 × 1022 kg
 4. 3.5 × 1022 N
 9. (a) 8.73 m s−2    (b) 8.78 N kg−1

 (d) 1.1 × 107 N    (e) 2.2 × 10−4 N
10. 0.034 m s−2

16. 
rSaturn
rVenus

 = 13

17. 3.02 × 108 m
20. 4.2 × 107 m
23. (a) 1.4 × 109 J     (b) 5.8 × 103 s or 97 minutes

 (c) r 3

T  2
 = constant for any satellite of Earth

 (d) (a) would be halved and (b) would remain the same.
24. (a) 1.4 × 104 N    (b) 1.7 × 1010 J  (c) 7.9 × 103 m s−1

25. (a) 8.78 N kg −1  (b) 615 N      (c) Zero

Chapter 5
Page 134
5.2 1.08 × 105 N C−1 to the left

Page 138
5.3 (a) 20 000 V m−1  (b) The strength would increase.

Page 140
5.4 (a) 1.6 × 10−16 J
 (b) 1.9 × 107 m s−1

Review questions
 2. (a) 1.3 × 10−4 N
 (b) 1.5 × 10−3 N; the forces remain equal.
 (c) 1.0 × 10−3 N, but the force is now an attractive force.
 (d) 4.0 × 10−3 N
 3. 7.9 N
 4. r would need to be increased by a factor of 2.8.
 5. 30 km
 6. 2.04 × 10−8 C
 7.  8 cm from the 4 × 10−6 C charge or 1.2 cm from the 9 × 10−6 C 

charge
 9. 6.15 × 1013 electrons
10. 8.2 × 10−8 N
11. 6.0 × 10−3 N
12. 8.5 × 10−2 N
13. 1.3 × 102 N
14. 5.7 × 1013 C
15 1.76 × 1012 C
16 F = 512 N, a = 7.7 × 1028 m s−2

17. 2.9 × 10−9 N
18. 5.0 × 105 N C−1 up
19. 2.0 × 106 N C−1 up
20. 1.02 × 10–7 N C−1

28. West
29. (a) Right
 (b) Right (and stronger than in (a))
30. 1.2 × 107 N C−1

31. 1.44 × 10−3 N C−1

32. (a) 4.0 × 10−3 N
 (b) 2.61 × 10−3 N
 (c) 90 V
33. (a) The 100 V battery
 (b) 1.6 × 10−17 J
 (c) The answer does not change.
 (d) The answer does not change.
 (e)  The electrons would not be accelerated, so would not 

gain any energy.
 (f ) The field strength is doubled.
34. (a) 1.75 × 1017 m s−1

 (b) 1.7 × 10−11 s
 (c) 2.57 × 10−3 m
 (d) 2.57 × 103 V

35. (a) d =
 

El2q
2mV  2  (b) 8 × 10−13 C

Chapter 6
Page 155
6.2 (a) 1.25 N  (b) 2.3 T
Page 159
6.3 1.05 × 106 m s–1

Review questions
12. (b) Force up the page
 (c) Force down the page 
 (d) Yes
13. 0.07 N
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14. 0.18 N
15. 1.4 N
16. 0.0058 N
29. (a) 4.6 × 10−14 N
 (c) 5.1 × 1016 m s−2

30. (a) 2.0 × 10−13 N
 (b) 2.2 × 1017 m s−2

 (c) 1.2 × 1014 m s−2

34. (a) 0.043 mm
 (b) 78 mm
 (c) 16 mm
35. 1.7 mT
36. 6.3 mT
37. 1.1 × 10−17 kg m s−1

40. (a) 5.9 × 106 m s−1

 (b) 3.56 × 104 V m−1 or N C−1

 (c) 1.78 × 103 V

Chapter 7
Page 168
7.1. 80 m s−1

Page 173
7.2. 50 μWb

Page 174
7.3. (a)  0.018 V
  (b) Anticlockwise

Page 178
7.4. 7.5 A, 10.6 A

Review questions
 3. (a) 0.15 Wb (b) 1.8 × 10−4 Wb (c) 3.0 × 10−3 Wb
12. (a) 0.016 V (b) 17 V (c) 38 V
13. (a) 0.004 A (b) 0.054 A (c) 0.19 A
14. (a) 2000 V (b) Zero
17. (a) 6000 m (b) 3.0 × 107 m2 (c) 3000 V
19. 0.024 C
23. 2.0 × 10−3 V
24. 8.9 V
25. (a) 28 ms (b) 35 Hz (c) 50 mV 
 (d) 100 mV (e) 35 mV
26. 6.4 V

Chapter 8
Page 187
8.1 0.05 or 1:20 — a step-up transformer

Page 193
8.2 (a) (i) 200 A (ii) 40 V   (iii) 8.0 kW, 16% (iv) 190 V
 (b) (i) 20 A  (ii) 4.0 V (iii) 80 W, 0.16% (iv) 249.6 V

Review questions
 1. 4800 V
 2. (a) 4.8 V (b) 450 V
 3. (a) 1000 turns (b) 8.3 A (c) 0.42 A
 6. (a) Step-down transformer (b) 48 turns
 7. (a) 135 V (b) 40.5 W (c) 0.675 A
 8. (a) 200 A (b) 12 kW
 (c) 60 V (d) 190 V
 (e) (i) 30 W (ii) 3.0 V (iii) 247 V
 9. (a) 6.0 Ω (b) 6.2 Ω (c) 232 V
 (d) (i) 2.15 Ω  (ii) 218 V
 (e) Yes (f ) Increase
10. (a) 667 A (b) 178 kW
 (c) 267 V (d) 330 kV, 220 MW
11. (a) 25% (b) 0.25%

Chapter 9
Page 207
9.1 335 m s−1

Page 211
9.2 (a) 1.8 Hz

Review questions
 1. (a) 21 min, 4.3 min
 (b) 260 min, 240 min
 3. (a) 2 s
 (b) 0.5 Hz
 4. (a) C
 (b) A and B
 5. 2.1 × 10−15 s
 6. 332 m s−1

 7. One wavelength
11. 0.78 s
12. 1.7 × 103 m
13. 1.02 m
14. 330 m s−1

15. (a) 1.33 m
 (b) 5.86 m
16.

v (m s−1) f (Hz) λ (m)

 335  500    0.67

 300   12 25

1500 5000    0.30

  60   24   2.5

 340 1000    0.34

 260  440    0.59

21. 1.50 m
23. (b) 1.0 m  (c) 330 m s−1

24. (a) 4.8 m s−1 (b) 0.60 m (c) 20 cm
 (d) 1.2 m (e) 8
31. (a) 0.50 m (b) 18.125 m (c) 3.0 m
32. (d) 20.40 m
33. (a) 1.7 m
34. (a) 0.229 m, 0.040 m  (b) 69°, 9.4°  (c) 5.2 cm
36. (a) 20 m s−1       (b) 416 Hz    (c) 170 m s−1

37. (a) 68 m s−1

38. 110 km h−1

39. (a) 85 m s−1

Chapter 10
Page 229
10.1 1.29

Page 233
10.2 1.24 × 103 m s−1

Page 234

10.3 
y
x

sin 1⎛
⎝⎜

⎞
⎠⎟

−

Page 243
10.4 (a) 2.1 × 10−6 m

Page 245
10.5 (a) 650 nm
    (b) Red
    (c)  The distance between the bands would be smaller as 

λblue < λred.
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Page 251
10.6 λ = 6.67 × 1014 Hz, T = 1.50 × 10−15 s

Page 252
10.7 4.4 × 1014 Hz

Review questions
 1. 29°, 6°
 2. 1.5
 3. 36°, 65°
 4. (a) θair = 25°, θacetone = 18.1°, θglycerol = 16.7°, θctc = 16.8°
 (b)  The angle of refraction in each layer will be exactly the 

same.
 7. 19°
 8. 0.85 cm
 9. 34.4°
11. 24°
12. (a) n = 1.4
13. 1.49
16. 46 cm
17. (a) 7.0 × 10−8 m
 (b) 3.0 × 108 m s−1, 2.3 × 10−16 sec
20. 1.82 × 106 m s−1

27. 2.1 × 10−15 s
28. (a) 460 nm
 (b) 310 nm
29. Red light: 19.8°; blue light: 19.7°. The difference is 0.1°.
30. Red light: 24.6°; blue light: 24.2°
31. (a) Red light: 1.67 cm; deep blue light: 1.69 cm
 (b) The deep blue light is shifted more, by 0.02 cm.
36. (a) Red light: 1.98 × 108 m s−1; violet light: 1.96 × 108 m s−1

 (b)  Red light: 27.8°; violet light: 27.5°. The path through the 
glass is 11.31 cm for red light and 11.27 cm for violet 
light.

41. Constructive: 1.06 μm, 2.12 μm, 3.18 μm .  .  .
 Destructive: 0.53 μm, 1.59 μm, 2.65 μm .  .  .
42. (b) (i) 0  (ii) 950 nm  (iii) 1266 nm
47. 2.58 × 10−3 m
48. 450 nm

Chapter 11
Page 262
11.1 4.4 × 1014 Hz

Page 263
11.2 1.4 × 1028 photons s−1

Page 268
11.3 (a) 78.75 eV = 79 eV
    (b)   A stopping potential of 79 eV will bring these electrons 

to rest.
    (c) 5.3 × 106 m s−1

    (d) 4.8 × 10−24 N s

Page 269
11.4 3.0 V

Page 274
11.6 2.3 eV
11.7 2.2 × 10−18 J

Page 279
11.8 (a) 1.4 × 10−19 J
    (b) 3.29 × 10−19 J = 2.1 eV
    (c) f0 = 4.96 × 1014 Hz, λ = 605 nm
    (d)  The photoelectric effect will not occur, as there is 

insufficient photon energy.

Page 281
11.9 (a) See the first table at the bottom of the page.
    (c)    (i) 6.7 × 10−34 J s = 4.2 × 10−15 eV s
    (ii) 2.1 × 1014 Hz
  (iii) 1.4 × 10−19 J = 0.88 eV
 (e) 2.93 × 10−19 J = 1.8 eV
 (f) The photocurrent would halve to 19 μA.
 (g) 1.7 V

Review questions
 1. (a) 6.53 × 10−7 m  (b) 2.18 × 10−15 s
 2. For green light at approximately 510 nm, this represents 

2 × 10−17 J/s
3.9 × 10−19 J/photon  ≈ 50 photons s−1.

 3. See the second table at the bottom of the page.

 4. 
rate of emission of red photons

rate of emission of blue photons
 = 1.33

 5. (a) 5.3 × 105 m s−1

 6. 1.1 V

Source Wavelength Frequency Energy Momentum

(a) Infra-red from CO2 laser 10.6 μm 2.83 × 1013 Hz 1.87 × 10−20 J, 0.117 eV 6.25 × 10−29 kg m s−1

(b) Red helium–neon laser 633 nm 4.74 × 1014 Hz 3.14 × 10−19 J, 1.96 eV 1.05 × 10−27 kg m s−1

(c) Yellow sodium lamp 589 nm 5.09 × 1014 Hz 3.37 × 10−19 J, 2.11 eV 1.125 × 10−27 kg m s−1

(d) UV from eximer laser 0.193 μm 1.55 × 1015 Hz 1.03 × 10−18 J, 6.42 eV 3.43 × 10−27 kg m s−1

(e) X-rays from aluminium 0.988 nm 3.03 × 1017 Hz 2.01 × 10−16 J, 1.25 keV 6.69 × 10−25 kg m s−1

Wavelength of light 
used (nm)

Frequency of light 
used × 1014 (Hz)

Photon energy  
of light used, 
 Ephoton (eV)

Stopping voltage 
readings (V)

Maximum  
photo-electron  
energy, Ee (J)

390 7.69 3.19 2.36 3.78 × 10−19

524 5.73 2.38 1.54 2.46 × 10−19
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 8. (a) 0.85 μA  (b) 1.0 μA
 (c) The current stays the same, 1.0 μA.
 (d) No increase in light intensity
 (e) 1.7 V, 1.7 eV = 2.72 × 10−19 J
 9. (a) 0.67 V  (b) 1.08 × 1015 Hz  (c) 9.1 × 1014 Hz
10. (a) 4.1 × 10−19 = 2.6 eV
 (b) 2.1 eV
 (c) λ = 265 nm, p = 2.5 × 10−27 N s
11.  The difference is 0.4 eV and the second cell has the greater 

work function.
12. (a) 1.5 eV, 2.4 × 10−19 J  (b) 2.5 V
 (c) 4.3 eV, 6.9 × 10−19 J
13. (a) 4.5 eV
 (b)     (i) Electrons emitted with energy 1.4 eV
    (ii) Electrons emitted with energy 0.6 ev
  (iii) and (iv) No electrons emitted
14. (a) 2.58 eV, 4.14 × 10−19 J
 (b) 2.58 V
15. (a) 4.6 × 1014 Hz  (b) 6.5 × 10−7 m
 (c) 1.9 eV  (d) 6.6 × 10−34 J s, 4.1 × 10−15 eV s

Chapter 12
Page 297
12.1 (a) 3.9 eV, 9.4 × 1014 Hz
    (b) 0.80 eV: n = 2 to n = 1 transition, 1.9 × 1014 Hz
12.2 1.59 × 1014 Hz, 1.9 × 10−6 m or 1.9 μm

Page 310
12.3  λelectron = 184λproton; the electron has the greater 

wavelength.

Page 311
12.4 0.4 m s−1

Page 312
12.5 2.14 × 106 m s−1

Page 314
12.6 (a) 5.4 × 102 V (b) λproton = 100λelectron
12.7 (a) 6.6 × 10−24 N s
    (b)  1.98 × 10−15 J or 12.4 keV for the photon; 2.4 × 10−17 J 

or approximately 150 eV for the electron

Page 322
12.8 Δpx = 5 × 10−25 N s

Review questions
 7.  (a),  (b), (c), (d) continuous spectrum, temperature related, 

polychromatic, incoherent, non-polarised
 (e)  discrete spectrum, temperature independent, 

polychromatic, incoherent, non-polarised
 (f)  discrete spectrum, temperature independent, generally 

monochromatic incoherent, can be polarised but still 
developmental

 (g)  discrete spectrum, temperature independent, 
monochromatic, coherent, generally polarised

 8. RGB LEDs consist of three different colour emitters.
 9. 2.15 eV
10. 6.9 × 10−7 m
11.  All photons of the same frequency also have the same phase.
12. (a) 1.3 × 10−14 m  (b) 1.7 × 10−10 m
 (c) 6.6 × 10−35 m
13. (a) 5 keV = 8.0 × 10−16 J
 (b) 2.5 × 10−10 m
15. p = 2.3 × 10−24 N s, λ = 2.9 × 10−10 m
16. (a) 3000 eV = 4.8 × 10−16 J
 (b) 3.0 × 10−23 N s, 2.2 × 10−11 m

 (c) 
λ
w  ≈ 0.04, diffraction effects not significant

 (d) Lower accelerating voltage to make wavelength bigger
 (e) 2.2 × 10−11 m, 3.0 × 10−23 N s
 (f ) 9.0 × 10−15 J = 5.6 × 104 eV or 56 keV
17. 1.1 × 103 m s−1

18. (b) 3.9 × 10−11 m (electron), 9.1 × 10−13 m (proton)
19. 38 V
20. The electron has the shorter wavelength.
21.  Ground state −10.4 eV, first excited state −5.5 eV, second 

excited state −3.7 and third excited state −1.6 eV
22.  The term ‘ground state’ defines the lowest energy state of an 

atom.
23. Energy change = 3.0 × 10−19 J = 1.9 eV
24. (b) 4.7 × 10−19 J = 2.9 eV
25. See the table at the bottom of the page.
26. (c) 0.7 eV, 2.6 eV, 12.8 eV, 1.9 eV, 12.1 eV, 10.2 eV
 (d)  λleast energy photon = 1.8 × 10−6 m,  

λgreatest energy photon = 9.7 × 10−8 m
28. (c) First excited state to ground transition: λ = 5.9 × 10−7 m,
  second excited state to ground transition: λ = 3.3 × 10−7 m,
  third excited state to ground transition: λ = 2.9 × 10−7 m
31. 2.6 × 10−25 N s
32. (a) 5.3 × 10−20 N s
 (b) 1.5 × 10−9 J = 9.5 × 109 eV or 9.5 GeV
33. In general terms, as the uncertainty in momentum gets 

smaller, the uncertainty in position increases.
37. The momentum of a person (mass 70 kg) moving with 

speed 1 m s−1 is 70 N s. If a doorway has a width of 1 m, 
then the uncertainty of the person’s sideways momentum is 
of order 10−34 N s. This uncertainty is negligible compared 
to 70 N s; thus, the diffraction effects are unobservable.

38. Classical laws contain no relationship between Δx and Δpx. 
On the very small scale, however, it becomes necessary to be 
mindful of the uncertainty principle, which places a boundary 
on what we are able to simultaneously know about a system.

Chapter 13
Page 336
13.3 (a)     (i) 9.6 ± 0.25 cm   (ii) 8.5 ± 0.125 cm
    (iii) 11.9 ± 0.05 cm
    (b) 63.9 ± 0.05 g

λ (nm) f (Hz) E (J) E (eV) p (N s)

Red light 632 4.73 × 1014 3.14 × 10−19 1.96 1.05 × 10−27

Electron 0.877 — 3.14 × 10−19 1.96 7.56 × 10−25

Blue light 405 7.41 × 1014 1.46 × 10−24 9.20 × 10−6 1.63 × 10−27

Electron 405 — 4.90 × 10−19 3.06 1.63 × 10−27
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Index

A
absolute refractive index 228
absolute rest, concept of 74
absorption spectra

absorption of photons by atoms 298
compared to emission spectra  

298–300
AC generators 186, 191
accelerating charged particles 303
acceleration 4–5

calculating for uniform circular 
motion 312

centripetal acceleration 31, 33
changing in circular motion 29–31
downwards 12
equations of motion with constant 

acceleration 8–10
upwards 12

acceleration–time graphs 6–8
accuracy of scientific measurement 339
air resistance 18

and projectile motion 27
airbags 66
algebraic analysis of motion 8–10
alternating current (AC) 177
amplitude

of periodic disturbance 177
of waves 205

angle of incidence 203, 227
angle of reflection 203
angle of refraction 227
antinodal lines 212
antinodes 209
apps 335
Aristotle 74, 290
astronauts 124–5
atomic theory

Bohr’s model 294–5
Dalton’s model 290
de Broglie’s model 315–16
Rutherford’s model 294

atoms
absorption of photons 298–300
emission of photons 293–7, 300–2

Aurora Australis 161
aurorae 161
Australian Syncroton 100
average velocity 28

B
black bodies 303
black body radiation 262, 283, 291, 304
Bohr, Niels 294, 308
Bohr radius 300

Bragg, William L. 317
Brahe, Tycho 108

C
Cardano, Girolamo 130
cathode rays 263, 291, 292
cathode-ray oscilloscopes (CRO) 335
Cavendish, Henry 111, 130
centre of gravity 16
centre of mass 16
centripetal acceleration 31, 33, 112, 124
charges, magnetic force on 158–60
Chelyabinsk asteroid 116, 117–21
chemical reactions 290
chemistry 290
circular motion see non-uniform circular 

motion; uniform circular motion
classical physics 78, 322
coherent waves 240
collisions

elastic and inelastic collisions 61–6
energy transformations 63–6
impulse and momentum 48–9
modelling 51–4

colour
effects of interference of waves  

215–16
frequency and wavelength 250–2
producing from white light 237–8
as property of light 204

commutators 157, 177
compressions 206
constant acceleration motion,  

equations of 8–10
constructive interference 208
continuous spectrum 298
continuous variables 332
controlled variables 332
Coolidge tube 264
Copernicus, Nicolas 108
copper loss 187
cosmic radiation 95
couloumbs 131
Couloumb’s constant 131
Couloumb’s Law 130–1, 137
critical angle 234
Crookes, William 291
crumple zones 64–5
current see electric current

D
Dalton, John 290
‘dark’ light 245
data loggers 335

Davisson, Clinton 310, 312
DC motors 156–8
de Broglie, Louis 293, 309, 310,  

315–16
de Broglie wavelength 309–10,  

311, 313
de Coulomb, Charles-Augustin  

130–1
dependent variables 332
Descartes, René 237
desert mirages 235
destructive interference 208
diamonds 238
diffraction 216

directional spread of different 
frequencies 217–18

of light 246–9
of water waves 216–18

diffuse reflection 203
digital posters 341–2
dipole fields 134–5
direct current (DC) 177
discrete variables 332
dispersion of light 237–9
displacement 3
distance 3
DNA structure, and electrical 

attraction 134–5
Doppler, Christian Johann 218
Doppler effect 95, 218–21
downwards acceleration 12
driving force 15
du Fay, Charles 130

E
E = mc² 97–103
Earth, origin of magnetism 147
eddy currents 188
Edison, Thomas 191
Einstein, Albert

on impossibility of absolute rest 74
length contraction thought 

experiment 91
particle model to explain photoelectric 

effect 262, 272, 282, 283
Special Theory of Relativity 73, 80–5, 

99, 100, 160
elastic collisions 62–3
electric current

generating 168–9
magnetic effect 149–52
magnetic force on 154–5
peak current 177
source of electrical energy 169–70

Index
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electric DC motors 156–8
electric fields

calculating strength 137–8
calculating value 133
changes in potential energy and kinetic 

energy 136
compared to gravitational fields 132
comparing with gravitational and 

magnetic fields 153–4
crossed with magnetic fields 161
dipole fields 134–5
drawing 132–3
graphing 135–6
as particle accelerators 138–40
relationships between force, field; 

energy and potential 140–1
uniform electric fields 136–8

electric force constant 131
electric power

distribution and transmission line 
losses 189–94

energy loss in transformers 187–8
Ohm’s Law 193–4
power ratings of appliances 194
transformers 185–8
transmission 184–5
transmission lines 190

electrical appliances, power ratings 194
electrical measuring instruments 335
electrical meters 156
electricity

generating current 168–9
generating voltage with magnetic 

field 167–8
electromagnetic induction 170–1
electromagnetic radiation 220

emitted by accelerating charged 
particles 303

as wave phenomonon 291
and X-rays 264

electromagnetic spectrum 250
electromagnetic waves, light as  

249–52
electromagnetism, theory of 74, 80
electromagnets 151
electron guns 139, 267
electron microscopes 139, 160
electron volts 267
electrons

diffraction through foils 312–14
discovery 290, 291, 291–3
distance from protons 299–300
as elementary particles 292
measuring energy associated 

with 265–7
particle models 291
as standing waves 315–16
wave behaviour 308–14
wave-like properties 310–12,  

315–16
elliptical orbits 108–9
emf (electromotive force) 168

see also induced emf
emission spectra

compared to absorption spectra  
298–300

photon emission by atoms 293–7

energy transfers, work in 54–5
energy transformations

in collisions 63–6
work in 54–5

equinoxes 108–9
excited state (atoms) 296

F
falling down, projectile motion 18–19
Faraday, Michael 80, 115, 148, 158, 

170, 295
Faraday’s Law 173, 186
Fata Morgana 235–6
fields

relationships between force, fields, 
energy and potential 140–1

see also electric fields; gravitational 
fields; magnetic fields

Fitzgerald, George 93
fixed variables 332
Fizeau, Hippolyte  232
fluorescence 263–4, 304
fluorescent light sources 300–1,  

304–6
Foucault, Jean Bernard Leon 232
frames of reference 78–80
Franklin, Benjamin 130
freeway barriers, diffraction of 

sound 217
frequency, of periodic waves 177, 208
Fresnel, Augustin-Jean 232, 245
Fresnel lens 245
friction, and uniform circular 

motion 34–6

G
Galilean relativity 76–7, 85
Galilei, Galileo 74–6, 78, 108, 200
galvanometers 170
Gaulard, Lucien 186
general relativity 83
generators 177
geostationary satellites 122–3
Germer, Lester 310
Gibbs, John D. 186
Gilbert, William 130, 147
glass, refractive index 232
global positioning system (GPS) 90
graphical analysis of motion 5–8
gravitation

Kepler’s laws 108–10, 112
Newton’s Law of Universal 

Gravitation 108, 110–14, 116, 122, 
130

gravitational field strength 57
gravitational fields

compared to electric fields 132
comparing with magnetic and electric 

fields 153–4
kinetic energy and potential energy 

in 116–21
nature of 114–16
and refraction of light 229
relationships between force, field; 

energy and potential 140–1
using the area under a field graph 121

gravitational force, graphing 113–14
gravitational potential energy 54, 56–8, 

141
Gray, Stephen 130
Grimaldi, Francesco 246
ground state (atoms) 296

H
Hall, David 95–6
Halley, Edmund 117
Halley’s Comet 117
hammer throwing 29–31
Heisenberg uncertainty principle 291, 

299, 318–22
Hertz, Heinrich 269–70
high jumpers 25
Hooke, Robert 59, 245
Hooke’s Law 59–60
horizontal velocity, projectile motion  

19–20
Huygens, Christiaan 230, 247, 252

I
Ibn Sahl, Abu Sa’d 228
impulse

in collisions 48–9, 50
determining from graphs 49

incandescent light sources 199, 294, 
304

inclined planes, forces acting on moving 
object 16–18

independent variables 332
induced emf

peak voltage 177
peak-to-peak voltage 178
principles 173–4
producing larger emf 178–9
RMS voltage 177
rotating a loop 175
using Lenz’s Law 175–6
using magnetic force on charges in 

wire 176–7
induced voltage 167
induction 146
inelastic collisions 63, 66
inertial reference frames 79
initial velocity at angle to horizontal, 

projectile motion 25–7
instantaneous speed 3
instantaneous velocity 3

and uniform circular motion 28–9
invariant quantities 80
ionisation energy 275
isolated systems 51

K
Kepler, Johannes 108–10
Kepler’s First Law 108, 110
Kepler’s Second Law 109
Kepler’s Third Law 109–10, 112, 122
kilowatt hours 194
kinetic energy 54

in electric fields 136
in a gravitational field 116–21
in special relativity 101

Index



378

L
Lane-Fox, St George 191
Large Hadron Collider 139
lasers 301–2
Laue spots 264
Law of Conservation of Energy 61
Law of Conservation of Momentum  

50–1, 62
Law of Universal Gravitation 108,  

110–14, 116, 122, 130
left-hand rule (direction of magnetic 

force) 155
Lenard, Philipp 270–2
length, measuring instruments 334
length contraction 90–5
Lenz’s Law 173, 175–6
level surface, forces on moving 

object 15–16
light

colour 204
diffraction 246–9
dispersion 237–9
as electromagnetic waves 249–52, 269
Fresnel’s biprism 245
Huygen’s wave model 230–2, 247
interference 245–6, 249
Lloyd’s mirror 246
Maxwell’s wave model 249–52, 261, 

262
measuring energy associated 

with 265
Newton’s rings 245
particle models 230–2, 240, 246, 272, 

273–4
path difference 241
photon model 262
plane mirror reflection 202–3
polarisation 252–4
rainbows 239
ray model 202, 229–33
reflection 203
refraction 227
shadows 201–2
sources 199
spacing of bands in interference 

pattern 243–5
as stream of particles 272
total internal reflection and critical 

angle 233–8
visible light 303
wave models 230–2, 247, 249–52, 

261, 262, 274–5, 281–2
wave-particle model 291
Young’s experiment 239–45
see also photoelectric effect

light bulbs
particle model view 273–4
wave model view 274–5

light speed 80, 82–6, 200–1, 232–3
light-emitting diodes (LED) 306
light-years 85
line of best fit, drawing 338
line emission spectrum 304
Lloyd, Humphrey 246
local antinodes 213
local nodes 213
lodestone 146

logbook 330, 340, 341
longitudinal waves 204, 205, 206
Lorentz contraction 92, 93
Lorentz factor 88
Lorentz, Hendrik 92, 93
low-voltage lighting 187
Lucretius 146, 147
luminous objects 199

M
magnetic compasses 146
magnetic fields 148

comparing with gravitational and 
electric fields 153–4

crossed with electric fields 161
drawing 148
measuring 152
relationships between force, field; 

energy and potential 140–1
right-hand-grip rule 150
strength 148, 152
using to generate voltage 167–8

magnetic flux 171–2
magnetic force

on charges 158–60
on electric current 154–5
rules for determining direction 155

magnetic propulsion 156
magnetism

early ideas about 146–8
and electricity 149–52
explaining 152–3

magnetite 146, 148
magnets

alnico magnets 151
electromagnets 151
flexible fridge magnets 152
neodymium magnets 152

mass, measuring instruments 333
mass spectrometers 139, 160
matter

particle model 290–1
wave-like properties 310–12

Maxwell, James Clerk 74, 80, 83, 97, 
249–52, 261, 262, 283

measurement see scientific measurement
measuring instruments 332–5
meters 156, 335
Michelson, Albert 82, 200–1
Michelson–Morley experiment 82, 83, 

85, 93
Microsoft Excel, using 339
Millikan, Robert 282
Minkowski, Hermann 86
mirages 234–6
momentum 10

in a collision 48–9, 50
conservation of 50–1

monochromatic light 270
Moon

period in relation to stars 122
period in relation to Sun 122
radius of orbit 122

Morley, Edward 82
motion

algebraic analysis 8–10
describing 3–5

graphical analysis 5–8
measuring instruments 334–5
modelling at very small scales 322
terminology 3

muons 96

N
nanocrystals 308
neodymium magnets 152
net force 11, 17
neutrons, discovery 290
Newton, Isaac 10, 74, 76, 78, 108, 109, 

116, 230, 237, 245, 246
laws of motion 10, 75, 83, 90, 110
particle model of light 230–2, 240, 

246
Newtonian mechanics 83, 85–6, 87, 90, 

100, 261, 283
Newton’s First Law of Motion 10–11,  

74
Newton’s Law of Universal 

Gravitation 108, 110–16, 122, 130
Newton’s rings 245
Newton’s Second Law of Motion 11, 

13–18, 48, 50, 64, 80
Newton’s Third Law of Motion 11, 12, 

31, 111, 154
nodal lines 211–12
nodes 209
non-uniform circular motion 38–40
non-uniform electric fields 141
the normal 203, 227
normal reaction force 15

O
Oersted, Hans Christian 149, 154
Ohm’s Law 193–4
optical fibres 236–7
optical instruments 248

P
p–n junction 306
parking spot paradox 94–5
particle accelerators 100, 138–40
particle model of light 230–2, 240, 246
path difference 241
peak current 177
peak voltage 177
peak-to-peak voltage 178
Peregrinus, Peter 147
period

of periodic wave 177, 205
of repeated circular motion 28

periodic waves 204, 205
Philosophia Naturalis Principia 

Mathematica (Newton) 111
photoelectric cells 284
photoelectric effect

Einstein’s explanation 262, 272–3
energy perspective 276
explaining Lenard’s observations  

277–81
Hertz’s observations of 269–70
Lenard’s experiment 270–2
observations and predictions of 

different models 285

Index



379

and particle model 275–81
particle model view of light bulb  

273–4
photon model 285
problems with wave model 281–2
timeline of key discoveries 285

photoelectrons, measuring energy 
of 267–9

photons 262, 283, 294
absorption by atoms 298–300
emission by atoms 293–7,  

300–2
wave properties 316–18

photovoltaic cells 284
Planck, Max 261, 262, 273, 283
Planck’s constant 251, 261, 265, 273, 

282, 285, 309
plane mirror reflection 202–3
polarisation 252–4
position–time graphs 5–6
potential energy

in electric fields 136
in a gravitational field 116–21

power ratings of electrical 
appliances 194

practical investigations
benefits of 328
digital posters 341–2
finding patterns 338–9
handling difficulties 340
limits to precision of 

measurements 335–6
logbooks 330, 332
measuring instruments 332–5
presentation of work 340–2
repeated measurements 336–8
requirements 328–9
research proposals 330–2
safety 340
topic selection 329–30
topics 342–4
variables 332
written reports 341

precision of scientific 
measurement 335–6, 339

Priestley, Joseph 130
projectile motion

and air resistance 27
calculations 27
falling down 18–19
initial velocity at angle to 

horizontal 25–7
modelling vertical and horizontal 

components 20–2
moving and falling 19–22
shooting at an angle 25–7
vertical projectile motion 22–4

proper length 92–3
proper time 89
proton–electron distance 299–300
protons, discovery 290
Ptolemy 108, 228

Q
quantised energy levels 295
quantum mechanics 291, 299, 316

R
radio waves 269–70
rainbows 239
rarefactions 206
ray model of light 202, 229–33
rays of light 202
reaction force 12
reference frames 78–80
reflection

regular and diffuse 203
total internal reflection 234
transverse waves in strings 208–9
of waves 208–9

refraction 227
regular reflection 203
relative refractive index 228
relativistic effects, seeing 95–6
relativity

E = mc² 97–103
electromagnetism and 80–6
frames of reference 78–80
Galilean relativity 76–7, 85
general relativity 83
nature of 73–4
parking spot paradox 94–5
principle of 74–6
special relativity 80, 82–3, 85, 88, 

97–103, 160
twins paradox 94

reliability of scientific measurement 340
research proposals 330–2
resistance forces 16
resistive loss 187
resonance 221
rest mass 99
restoring force 59
right-hand-grip rule 150, 173
right-hand-slap rule 155
RMS (root mean square) voltage 177
road friction 16
Robison, John 130
Roemer, Olaus 200
roller coasters 39–40
Röntgen, Wilhelm 263–4
Rossi, Bruno 95
Rossi–Hall experiment 95–6
Rutherford, Ernest 294, 309

S
safety, in practical investigations 340
satellites 122–3
scalar quantities 3
scientific measurement

accuracy 339
key aspects 339–40
precision and uncertainty  

335–6, 339
reliability 340
repeated measurements 336–8
validity 339–40

semiconductors 306
shadows 201–2
sidereal period 122
Snellius, Willebrord 227
Snell’s Law 229
solar cells 284

solar system
elliptical orbits 108–9
gravitational fields 114–21
Kepler’s laws 108–10
Newton’s Law of Universal 

Gravitation 108, 110–16, 122, 130
solar system, useful data 110
solenoids 150, 151
sound

diffraction around freeway 
barriers 217

directional spread of different 
frequencies 217–18

interference of waves 213–15
space–time diagrams 86
special relativity 80, 82–3, 160

Einstein’s two postulates 83, 85, 86, 88
equation E = mc² 97–103
kinetic energy in 101

spectrometers 293
specular reflection 203
speed 3

instantaneous speed 3
speed of light 85–6, 200–1, 232–3
speed radar guns 73, 220
springs 58–61
SQUIDs (Superconducting QUantum 

Interference Devices) 152
standing waves 209–11, 315–16
Stefan–Boltzmann relationship 251
step-down transformers 187
step-up transformers 187
strain potential energy 54

and springs 58–61
Sturgeon, William 151
the Sun, mass conversion 101–3
superposition 207–8
synchrotron radiation 306–8
synchrotrons 100, 139

T
Taylor, Geoffrey 316–17
tension 33
terminal velocity 19
teslas 148
thermal radiation 303–4
thermal spectrum 304
Thomson, G.P. 312
Thomson, Joseph John 291–2, 312
thought experiments 87
time, measuring instruments 334
time dilation 87–90
torque 156
torsion balance 131
total internal reflection 234
transformers 185–8
transmission lines 190
transverse waves 204
twins paradox 94

U
ultraviolet light 245
uncertainty of scientific 

measurement 335–6, 339
uniform circular motion

average velocity 28
centripetal acceleration 31, 33

Index



380

uniform circular motion (continued)
changing velocities and 

accelerations 29–31
effect on objects inside objects 

travelling in circles 36–7
and friction 34–6
instantaneous velocity 28–9

uniform electric fields 136–8, 140–1
upwards acceleration 12

V
validity of scientific measurement 339–40
variables 332
vector quantities 3
velocity 3

changing in circular motion 29–31
horizontal velocity of projectiles 19–20
instantaneous velocity 3
vertical velocity of projectiles 20

velocity–time graphs 6
vertical distance, travelled over time 19
vertical projectile motion 22–4
vertical velocity, projectile motion 20

voltage, generating with magnetic 
field 167–8

voltages, in transmission system 190
von Laue, Max 264–5, 310

W
water, refractive index 232
water waves, diffraction 216–17
wave–particle duality 316
wave–particle model of light 291, 316
wavelengths 205
waves

colour effects of interference 215–16
interference of 207–16
interference with sound 213–15
interference in two dimensions 211–13
nature of 204
polarisation 252–4
properties 205–7
reflection of 208–9
standing waves 209–11
transverse standing waves in strings  

or springs 209–10

webers (Wb) 171
weight force 12, 15
Westinghouse, George 191
white paint 238
Wien, Wilhelm 161
Wien’s Law 251
work, in energy transfers and 

transformations 54
work function 275

X
X-rays 263–5

Y
Young, Thomas 232, 239–40, 245, 249, 

261
Young’s experiment with light 

waves 239–45

Z
Zeno’s paradoxes 318

Index


	Cover
	Half Title Page
	Title Page
	Copyright Page
	Contents
	About eBookPLUS and studyON
	About this book
	Acknowledgements
	UNIT 3
	CHAPTER 1 Forces in action
	Describing motion
	Graphical analysis of motion
	Algebraic analysis of motion
	Newton’s laws of motion
	Feeling lighter — feeling heavier
	Applying newton’s second law of motion
	Projectile motion
	Uniform circular motion
	Non-uniform circular motion

	CHAPTER 2 Collisions and other interactions
	Impulse and momentum in a collision
	Impulse from a graph
	Momentum and impulse 
	Conservation of momentum
	Modelling a collision
	Work in energy transfers and transformations
	Getting down to work
	Gravitational potential energy
	Strain potential energy and springs
	Elastic and inelastic collisions

	CHAPTER 3 Special relativity
	What is relativity?
	Electromagnetism brings new challenges
	Time dilation
	Length contraction
	A note on seeing relativistic effects
	The most famous equation: E = mc2

	CHAPTER 4 Gravitation
	Explaining the solar system
	Astronauts and satellites in orbit

	CHAPTER 5 Electric fields
	The long road to Coulomb’s Law
	Electric fields
	Linking the concepts together

	CHAPTER 6 Magnetic fields
	Early ideas about magnetism
	Magnetic effect of a current
	Differences between magnetic fields
	Explaining magnetism
	Comparing gravitational, electric and magnetic fields
	Magnetic force on an electric current
	Magnetic propulsion
	Meters
	Magnetic force on charges
	Crossed electric and magnetic fields
	Overview

	CHAPTER 7 Generating electricity
	Making electricity
	Faraday’s discovery of electromagnetic induction
	Magnetic flux
	Induced EMF
	Producing a greater EMF

	CHAPTER 8 Transmission of power
	Electric power
	Transformers
	Power distribution and transmission line losses


	UNIT 4
	CHAPTER 9 Mechanical waves
	Light and its properties
	Waves — energy transfer without matter transfer
	Properties of waves
	Interference of waves
	Diffraction
	The Doppler effect
	Resonance

	CHAPTER 10 Light as a wave
	Bending of light
	Snell’s Law
	Limitations of the ray model
	Total internal reflection and
critical angle
	Rainbows
	Young’s experiment
	Other interference experiments
	Diffraction of light
	Light as an electromagnetic wave
	Polarisation

	CHAPTER 11 The photoelectric effect
	Physics before the observation of the photoelectric effect
	A mysterious radiation
	The photoelectric effect
	The particle model and the photoelectric effect
	What’s wrong with the wave model?
	Great photoelectric effect results
	A photon model for the photoelectric effect

	CHAPTER 12 Matter — particles and waves
	The particle model of matter unhinged
	The discovery of electrons
	Emission spectra — atoms emit photons
	Absorption spectra — atoms absorb photons
	Making light
	Synchrotron radiation
	The wave behaviour of electrons
	Electrons, atoms and standing waves
	Waves or particles?
	Heisenberg’s uncertainty principle
	Why classical laws of physics areunable to model motion at very small scales

	CHAPTER 13 Practical investigations
	What is the benefit to you?
	What is involved?
	Selecting a topic
	Submitting a research proposal
	Variables
	Selecting your measuring instruments
	Finding patterns
	Other aspects of scientific measurement
	Handling difficulties
	Safety
	Presenting your work for assessment
	Topics


	Appendix 1 Skill checks
	Appendix 2 Periodic table of the elements
	Appendix 3 Some useful as tronomical data
	Appendix 4 Useful formulae
	Glossary
	Answers to numerical questions
	Index

